File: ref_mul.c

package info (click to toggle)
libzn-poly 0.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 904 kB
  • sloc: ansic: 10,736; python: 124; makefile: 12; sh: 6
file content (291 lines) | stat: -rw-r--r-- 6,997 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
   ref_mul.c:  reference implementations for polynomial multiplication,
               middle product, scalar multiplication, integer middle product
   
   Copyright (C) 2007, 2008, David Harvey
   
   This file is part of the zn_poly library (version 0.9).
   
   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 2 of the License, or
   (at your option) version 3 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/

#include "support.h"
#include "zn_poly_internal.h"
#include <string.h>


/*
   Sets x = op[0] + op[1]*B + ... + op[n-1]*B^(n-1), where B = 2^b.
   
   Running time is soft-linear in output length.
*/
void
pack (mpz_t x, const ulong* op, size_t n, unsigned b)
{
   ZNP_ASSERT (n >= 1);

   if (n == 1)
   {
      // base case
      mpz_set_ui (x, op[0]);
   }
   else
   {
      // recursively split into top and bottom halves
      mpz_t y;
      mpz_init (y);
      pack (x, op, n / 2, b);
      pack (y, op + n / 2, n - n / 2, b);
      mpz_mul_2exp (y, y, (n / 2) * b);
      mpz_add (x, x, y);
      mpz_clear (y);
   }
}



/*
   Inverse operation of pack(), with output coefficients reduced mod m.
   
   Running time is soft-linear in output length.
*/
void
unpack (ulong* res, const mpz_t op, size_t n, unsigned b, ulong m)
{
   ZNP_ASSERT (n >= 1);
   ZNP_ASSERT (mpz_sizeinbase (op, 2) <= n * b);

   mpz_t y;
   mpz_init(y);
   
   if (n == 1)
   {
      // base case
      mpz_set (y, op);
      mpz_fdiv_r_ui (y, y, m);
      *res = mpz_get_ui (y);
   }
   else
   {
      // recursively split into top and bottom halves
      mpz_tdiv_q_2exp (y, op, (n / 2) * b);
      unpack (res + n / 2, y, n - n / 2, b, m);
      mpz_tdiv_r_2exp (y, op, (n / 2) * b);
      unpack (res, y, n / 2, b, m);
   }
   
   mpz_clear (y);
}



/*
   Reference implementation of zn_array_mul().
   Very simple Kronecker substitution, uses GMP for multiplication.
*/
void
ref_zn_array_mul (ulong* res,
                  const ulong* op1, size_t n1,
                  const ulong* op2, size_t n2,
                  const zn_mod_t mod)
{
   ZNP_ASSERT (n2 >= 1);
   ZNP_ASSERT (n1 >= n2);
   
   mpz_t x, y;
   mpz_init (x);
   mpz_init (y);
   
   unsigned b = 2 * mod->bits + ceil_lg (n2);
   unsigned words = CEIL_DIV (b, ULONG_BITS);
   
   pack (x, op1, n1, b);
   pack (y, op2, n2, b);
   mpz_mul (x, x, y);
   unpack (res, x, n1 + n2 - 1, b, mod->m);
   
   mpz_clear (y);
   mpz_clear (x);
}



/*
   Reference implementation of zn_array_mulmid().
   Just calls ref_zn_array_mul() and extracts relevant part of output.
*/
void
ref_zn_array_mulmid (ulong* res,
                     const ulong* op1, size_t n1,
                     const ulong* op2, size_t n2,
                     const zn_mod_t mod)
{
   ZNP_ASSERT (n2 >= 1);
   ZNP_ASSERT (n1 >= n2);
   
   ulong* temp = (ulong*) malloc ((n1 + n2 - 1) * sizeof (ulong));
   ref_zn_array_mul (temp, op1, n1, op2, n2, mod);
   ulong i;
   for (i = 0; i < n1 - n2 + 1; i++)
      res[i] = temp[i + n2 - 1];
   free (temp);
}



/*
   Reference implementation of negacyclic multiplication.
   
   Multiplies op1[0, n) by op2[0, n) negacyclically, puts result into
   res[0, n).
*/
void
ref_zn_array_negamul (ulong* res, const ulong* op1, const ulong* op2,
                      size_t n, const zn_mod_t mod)
{
   ulong* temp = (ulong*) malloc (sizeof (ulong) * 2 * n);
   
   ref_zn_array_mul (temp, op1, n, op2, n, mod);
   temp[2 * n - 1] = 0;
   
   mpz_t x;
   mpz_init (x);

   size_t i;
   for (i = 0; i < n; i++)
   {
      mpz_set_ui (x, temp[i]);
      mpz_sub_ui (x, x, temp[i + n]);
      mpz_mod_ui (x, x, mod->m);
      res[i] = mpz_get_ui (x);
   }
   
   mpz_clear (x);
   free (temp);
}



/*
   Reference implementation of scalar multiplication.
   
   Multiplies op[0, n) by x, puts result in res[0, n).
*/
void
ref_zn_array_scalar_mul (ulong* res, const ulong* op, size_t n,
                         ulong x, const zn_mod_t mod)
{
   mpz_t y;
   mpz_init (y);
   
   size_t i;
   for (i = 0; i < n; i++)
   {
      mpz_set_ui (y, op[i]);
      mpz_mul_ui (y, y, x);
      mpz_mod_ui (y, y, mod->m);
      res[i] = mpz_get_ui (y);
   }
   
   mpz_clear (y);
}



/*
   Reference implementation of mpn_smp.
   
   Computes SMP(op1[0, n1), op2[0, n2)), stores result at res[0, n1 - n2 + 3).
*/
void
ref_mpn_smp (mp_limb_t* res,
             const mp_limb_t* op1, size_t n1,
             const mp_limb_t* op2, size_t n2)
{
   ZNP_ASSERT (n2 >= 1);
   ZNP_ASSERT (n1 >= n2);

   mp_limb_t* prod = (mp_limb_t*) malloc (sizeof (mp_limb_t) * (n1 + n2));
   
   // first compute the ordinary product
   mpn_mul (prod, op1, n1, op2, n2);

   // now we want to remove the cross-terms that could possibly interfere
   // with the result we want, i.e. in the following diagram, we want only
   // contributions from O's, but mpn_mul has given us all of O, A and X,
   // and we will remove the A's.
   
   // OOOOAAXX
   // AOOOOAAX
   // AAOOOOAA
   // XAAOOOOA
   // XXAAOOOO
   
   int which;      // 0 == bottom-left corner, 1 == top-right corner
   size_t diag;    // 0 == closest to diagonal, 1 == next diagonal
   size_t i, x, y, off;
   mp_limb_t lo, hi;
   
   for (which = 0; which <= 1; which++)
   for (diag = 0; diag < ZNP_MIN (n2 - 1, 2); diag++)
   for (i = 0; i < n2 - 1 - diag; i++)
   {
      x = n2 - 2 - i - diag;
      y = i;
      if (which)
      {
         x = n1 - 1 - x;
         y = n2 - 1 - y;
      }
      off = x + y;
      hi = mpn_mul_1 (&lo, op1 + x, 1, op2[y]);
      mpn_sub_1 (prod + off, prod + off, n1 + n2 - off, lo);
      mpn_sub_1 (prod + off + 1, prod + off + 1, n1 + n2 - off - 1, hi);
   }

   // copy the result to the output array
   memcpy (res, prod + n2 - 1, sizeof (mp_limb_t) * (n1 - n2 + 2));
   res[n1 - n2 + 2] = (n2 > 1) ? prod[n1 + 1] : 0;
   free (prod);
}


/*
   Reference implementation of mpn_mulmid.

   Let P = product op1 * op2. Computes P[n2 + 1, n1), stores result at
   res[2, n1 - n2 + 1).
*/
void
ref_mpn_mulmid (mp_limb_t* res, const mp_limb_t* op1, size_t n1,
                const mp_limb_t* op2, size_t n2)
{
   ZNP_ASSERT (n2 >= 1);
   ZNP_ASSERT (n1 >= n2);

   mp_limb_t* prod = (mp_limb_t*) malloc (sizeof (mp_limb_t) * (n1 + n2));
   
   // compute the ordinary product
   mpn_mul (prod, op1, n1, op2, n2);
   
   // copy relevant segment to output
   if (n1 > n2)
      memcpy (res + 2, prod + n2 + 1, sizeof (mp_limb_t) * (n1 - n2 - 1));
   
   free (prod);
}


// end of file ****************************************************************