1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
# ################################################################
# Copyright (c) 2020-2020, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ##########################################################################
import argparse
import glob
import json
import os
import time
import pickle as pk
import subprocess
import urllib.request
GITHUB_API_PR_URL = "https://api.github.com/repos/facebook/zstd/pulls?state=open"
GITHUB_URL_TEMPLATE = "https://github.com/{}/zstd"
RELEASE_BUILD = {"user": "facebook", "branch": "dev", "hash": None}
# check to see if there are any new PRs every minute
DEFAULT_MAX_API_CALL_FREQUENCY_SEC = 60
PREVIOUS_PRS_FILENAME = "prev_prs.pk"
# Not sure what the threshold for triggering alarms should be
# 1% regression sounds like a little too sensitive but the desktop
# that I'm running it on is pretty stable so I think this is fine
CSPEED_REGRESSION_TOLERANCE = 0.01
DSPEED_REGRESSION_TOLERANCE = 0.01
def get_new_open_pr_builds(prev_state=True):
prev_prs = None
if os.path.exists(PREVIOUS_PRS_FILENAME):
with open(PREVIOUS_PRS_FILENAME, "rb") as f:
prev_prs = pk.load(f)
data = json.loads(urllib.request.urlopen(GITHUB_API_PR_URL).read().decode("utf-8"))
prs = {
d["url"]: {
"user": d["user"]["login"],
"branch": d["head"]["ref"],
"hash": d["head"]["sha"].strip(),
}
for d in data
}
with open(PREVIOUS_PRS_FILENAME, "wb") as f:
pk.dump(prs, f)
if not prev_state or prev_prs == None:
return list(prs.values())
return [pr for url, pr in prs.items() if url not in prev_prs or prev_prs[url] != pr]
def get_latest_hashes():
tmp = subprocess.run(["git", "log", "-1"], stdout=subprocess.PIPE).stdout.decode(
"utf-8"
)
sha1 = tmp.split("\n")[0].split(" ")[1]
tmp = subprocess.run(
["git", "show", "{}^1".format(sha1)], stdout=subprocess.PIPE
).stdout.decode("utf-8")
sha2 = tmp.split("\n")[0].split(" ")[1]
tmp = subprocess.run(
["git", "show", "{}^2".format(sha1)], stdout=subprocess.PIPE
).stdout.decode("utf-8")
sha3 = "" if len(tmp) == 0 else tmp.split("\n")[0].split(" ")[1]
return [sha1.strip(), sha2.strip(), sha3.strip()]
def get_builds_for_latest_hash():
hashes = get_latest_hashes()
for b in get_new_open_pr_builds(False):
if b["hash"] in hashes:
return [b]
return []
def clone_and_build(build):
if build["user"] != None:
github_url = GITHUB_URL_TEMPLATE.format(build["user"])
os.system(
"""
rm -rf zstd-{user}-{sha} &&
git clone {github_url} zstd-{user}-{sha} &&
cd zstd-{user}-{sha} &&
{checkout_command}
make &&
cd ../
""".format(
user=build["user"],
github_url=github_url,
sha=build["hash"],
checkout_command="git checkout {} &&".format(build["hash"])
if build["hash"] != None
else "",
)
)
return "zstd-{user}-{sha}/zstd".format(user=build["user"], sha=build["hash"])
else:
os.system("cd ../ && make && cd tests")
return "../zstd"
def parse_benchmark_output(output):
idx = [i for i, d in enumerate(output) if d == "MB/s"]
return [float(output[idx[0] - 1]), float(output[idx[1] - 1])]
def benchmark_single(executable, level, filename):
return parse_benchmark_output((
subprocess.run(
[executable, "-qb{}".format(level), filename], stderr=subprocess.PIPE
)
.stderr.decode("utf-8")
.split(" ")
))
def benchmark_n(executable, level, filename, n):
speeds_arr = [benchmark_single(executable, level, filename) for _ in range(n)]
cspeed, dspeed = max(b[0] for b in speeds_arr), max(b[1] for b in speeds_arr)
print(
"Bench (executable={} level={} filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format(
os.path.basename(executable),
level,
os.path.basename(filename),
n,
cspeed,
dspeed,
)
)
return (cspeed, dspeed)
def benchmark(build, filenames, levels, iterations):
executable = clone_and_build(build)
return [
[benchmark_n(executable, l, f, iterations) for f in filenames] for l in levels
]
def benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, level, iterations):
cspeeds, dspeeds = [], []
for _ in range(iterations):
output = subprocess.run([executable, "-qb{}".format(level), "-D", dictionary_filename, "-r", filenames_directory], stderr=subprocess.PIPE).stderr.decode("utf-8").split(" ")
cspeed, dspeed = parse_benchmark_output(output)
cspeeds.append(cspeed)
dspeeds.append(dspeed)
max_cspeed, max_dspeed = max(cspeeds), max(dspeeds)
print(
"Bench (executable={} level={} filenames_directory={}, dictionary_filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format(
os.path.basename(executable),
level,
os.path.basename(filenames_directory),
os.path.basename(dictionary_filename),
iterations,
max_cspeed,
max_dspeed,
)
)
return (max_cspeed, max_dspeed)
def benchmark_dictionary(build, filenames_directory, dictionary_filename, levels, iterations):
executable = clone_and_build(build)
return [benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, l, iterations) for l in levels]
def parse_regressions_and_labels(old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build):
cspeed_reg = (old_cspeed - new_cspeed) / old_cspeed
dspeed_reg = (old_dspeed - new_dspeed) / old_dspeed
baseline_label = "{}:{} ({})".format(
baseline_build["user"], baseline_build["branch"], baseline_build["hash"]
)
test_label = "{}:{} ({})".format(
test_build["user"], test_build["branch"], test_build["hash"]
)
return cspeed_reg, dspeed_reg, baseline_label, test_label
def get_regressions(baseline_build, test_build, iterations, filenames, levels):
old = benchmark(baseline_build, filenames, levels, iterations)
new = benchmark(test_build, filenames, levels, iterations)
regressions = []
for j, level in enumerate(levels):
for k, filename in enumerate(filenames):
old_cspeed, old_dspeed = old[j][k]
new_cspeed, new_dspeed = new[j][k]
cspeed_reg, dspeed_reg, baseline_label, test_label = parse_regressions_and_labels(
old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build
)
if cspeed_reg > CSPEED_REGRESSION_TOLERANCE:
regressions.append(
"[COMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
level,
filename,
baseline_label,
test_label,
old_cspeed,
new_cspeed,
cspeed_reg * 100.0,
)
)
if dspeed_reg > DSPEED_REGRESSION_TOLERANCE:
regressions.append(
"[DECOMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
level,
filename,
baseline_label,
test_label,
old_dspeed,
new_dspeed,
dspeed_reg * 100.0,
)
)
return regressions
def get_regressions_dictionary(baseline_build, test_build, filenames_directory, dictionary_filename, levels, iterations):
old = benchmark_dictionary(baseline_build, filenames_directory, dictionary_filename, levels, iterations)
new = benchmark_dictionary(test_build, filenames_directory, dictionary_filename, levels, iterations)
regressions = []
for j, level in enumerate(levels):
old_cspeed, old_dspeed = old[j]
new_cspeed, new_dspeed = new[j]
cspeed_reg, dspeed_reg, baesline_label, test_label = parse_regressions_and_labels(
old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build
)
if cspeed_reg > CSPEED_REGRESSION_TOLERANCE:
regressions.append(
"[COMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
level,
filenames_directory,
dictionary_filename,
baseline_label,
test_label,
old_cspeed,
new_cspeed,
cspeed_reg * 100.0,
)
)
if dspeed_reg > DSPEED_REGRESSION_TOLERANCE:
regressions.append(
"[DECOMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
level,
filenames_directory,
dictionary_filename,
baseline_label,
test_label,
old_dspeed,
new_dspeed,
dspeed_reg * 100.0,
)
)
return regressions
def main(filenames, levels, iterations, builds=None, emails=None, continuous=False, frequency=DEFAULT_MAX_API_CALL_FREQUENCY_SEC, dictionary_filename=None):
if builds == None:
builds = get_new_open_pr_builds()
while True:
for test_build in builds:
if dictionary_filename == None:
regressions = get_regressions(
RELEASE_BUILD, test_build, iterations, filenames, levels
)
else:
regressions = get_regressions_dictionary(
RELEASE_BUILD, test_build, filenames, dictionary_filename, levels, iterations
)
body = "\n".join(regressions)
if len(regressions) > 0:
if emails != None:
os.system(
"""
echo "{}" | mutt -s "[zstd regression] caused by new pr" {}
""".format(
body, emails
)
)
print("Emails sent to {}".format(emails))
print(body)
if not continuous:
break
time.sleep(frequency)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--directory", help="directory with files to benchmark", default="golden-compression")
parser.add_argument("--levels", help="levels to test eg ('1,2,3')", default="1")
parser.add_argument("--iterations", help="number of benchmark iterations to run", default="1")
parser.add_argument("--emails", help="email addresses of people who will be alerted upon regression. Only for continuous mode", default=None)
parser.add_argument("--frequency", help="specifies the number of seconds to wait before each successive check for new PRs in continuous mode", default=DEFAULT_MAX_API_CALL_FREQUENCY_SEC)
parser.add_argument("--mode", help="'fastmode', 'onetime', 'current', or 'continuous' (see README.md for details)", default="current")
parser.add_argument("--dict", help="filename of dictionary to use (when set, this dictioanry will be used to compress the files provided inside --directory)", default=None)
args = parser.parse_args()
filenames = args.directory
levels = [int(l) for l in args.levels.split(",")]
mode = args.mode
iterations = int(args.iterations)
emails = args.emails
frequency = int(args.frequency)
dictionary_filename = args.dict
if dictionary_filename == None:
filenames = glob.glob("{}/**".format(filenames))
if (len(filenames) == 0):
print("0 files found")
quit()
if mode == "onetime":
main(filenames, levels, iterations, frequency=frequenc, dictionary_filename=dictionary_filename)
elif mode == "current":
builds = [{"user": None, "branch": "None", "hash": None}]
main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename)
elif mode == "fastmode":
builds = [{"user": "facebook", "branch": "release", "hash": None}]
main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename)
else:
main(filenames, levels, iterations, None, emails, True, frequency=frequency, dictionary_filename=dictionary_filename)
|