1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "platform.h"
#include <stdio.h> /* fprintf, open, fdopen, fread, _fileno, stdin, stdout */
#include <stdlib.h> /* malloc, free */
#include <assert.h>
#include <errno.h> /* errno */
#if defined (_MSC_VER)
# include <sys/stat.h>
# include <io.h>
#endif
#include "fileio_asyncio.h"
#include "fileio_common.h"
/* **********************************************************************
* Sparse write
************************************************************************/
/** AIO_fwriteSparse() :
* @return : storedSkips,
* argument for next call to AIO_fwriteSparse() or AIO_fwriteSparseEnd() */
static unsigned
AIO_fwriteSparse(FILE* file,
const void* buffer, size_t bufferSize,
const FIO_prefs_t* const prefs,
unsigned storedSkips)
{
const size_t* const bufferT = (const size_t*)buffer; /* Buffer is supposed malloc'ed, hence aligned on size_t */
size_t bufferSizeT = bufferSize / sizeof(size_t);
const size_t* const bufferTEnd = bufferT + bufferSizeT;
const size_t* ptrT = bufferT;
static const size_t segmentSizeT = (32 KB) / sizeof(size_t); /* check every 32 KB */
if (prefs->testMode) return 0; /* do not output anything in test mode */
if (!prefs->sparseFileSupport) { /* normal write */
size_t const sizeCheck = fwrite(buffer, 1, bufferSize, file);
if (sizeCheck != bufferSize)
EXM_THROW(70, "Write error : cannot write block : %s",
strerror(errno));
return 0;
}
/* avoid int overflow */
if (storedSkips > 1 GB) {
if (LONG_SEEK(file, 1 GB, SEEK_CUR) != 0)
EXM_THROW(91, "1 GB skip error (sparse file support)");
storedSkips -= 1 GB;
}
while (ptrT < bufferTEnd) {
size_t nb0T;
/* adjust last segment if < 32 KB */
size_t seg0SizeT = segmentSizeT;
if (seg0SizeT > bufferSizeT) seg0SizeT = bufferSizeT;
bufferSizeT -= seg0SizeT;
/* count leading zeroes */
for (nb0T=0; (nb0T < seg0SizeT) && (ptrT[nb0T] == 0); nb0T++) ;
storedSkips += (unsigned)(nb0T * sizeof(size_t));
if (nb0T != seg0SizeT) { /* not all 0s */
size_t const nbNon0ST = seg0SizeT - nb0T;
/* skip leading zeros */
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
storedSkips = 0;
/* write the rest */
if (fwrite(ptrT + nb0T, sizeof(size_t), nbNon0ST, file) != nbNon0ST)
EXM_THROW(93, "Write error : cannot write block : %s",
strerror(errno));
}
ptrT += seg0SizeT;
}
{ static size_t const maskT = sizeof(size_t)-1;
if (bufferSize & maskT) {
/* size not multiple of sizeof(size_t) : implies end of block */
const char* const restStart = (const char*)bufferTEnd;
const char* restPtr = restStart;
const char* const restEnd = (const char*)buffer + bufferSize;
assert(restEnd > restStart && restEnd < restStart + sizeof(size_t));
for ( ; (restPtr < restEnd) && (*restPtr == 0); restPtr++) ;
storedSkips += (unsigned) (restPtr - restStart);
if (restPtr != restEnd) {
/* not all remaining bytes are 0 */
size_t const restSize = (size_t)(restEnd - restPtr);
if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
EXM_THROW(92, "Sparse skip error ; try --no-sparse");
if (fwrite(restPtr, 1, restSize, file) != restSize)
EXM_THROW(95, "Write error : cannot write end of decoded block : %s",
strerror(errno));
storedSkips = 0;
} } }
return storedSkips;
}
static void
AIO_fwriteSparseEnd(const FIO_prefs_t* const prefs, FILE* file, unsigned storedSkips)
{
if (prefs->testMode) assert(storedSkips == 0);
if (storedSkips>0) {
assert(prefs->sparseFileSupport > 0); /* storedSkips>0 implies sparse support is enabled */
(void)prefs; /* assert can be disabled, in which case prefs becomes unused */
if (LONG_SEEK(file, storedSkips-1, SEEK_CUR) != 0)
EXM_THROW(69, "Final skip error (sparse file support)");
/* last zero must be explicitly written,
* so that skipped ones get implicitly translated as zero by FS */
{ const char lastZeroByte[1] = { 0 };
if (fwrite(lastZeroByte, 1, 1, file) != 1)
EXM_THROW(69, "Write error : cannot write last zero : %s", strerror(errno));
} }
}
/* **********************************************************************
* AsyncIO functionality
************************************************************************/
/* AIO_supported:
* Returns 1 if AsyncIO is supported on the system, 0 otherwise. */
int AIO_supported(void) {
#ifdef ZSTD_MULTITHREAD
return 1;
#else
return 0;
#endif
}
/* ***********************************
* Generic IoPool implementation
*************************************/
static IOJob_t *AIO_IOPool_createIoJob(IOPoolCtx_t *ctx, size_t bufferSize) {
IOJob_t* const job = (IOJob_t*) malloc(sizeof(IOJob_t));
void* const buffer = malloc(bufferSize);
if(!job || !buffer)
EXM_THROW(101, "Allocation error : not enough memory");
job->buffer = buffer;
job->bufferSize = bufferSize;
job->usedBufferSize = 0;
job->file = NULL;
job->ctx = ctx;
job->offset = 0;
return job;
}
/* AIO_IOPool_createThreadPool:
* Creates a thread pool and a mutex for threaded IO pool.
* Displays warning if asyncio is requested but MT isn't available. */
static void AIO_IOPool_createThreadPool(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs) {
ctx->threadPool = NULL;
ctx->threadPoolActive = 0;
if(prefs->asyncIO) {
if (ZSTD_pthread_mutex_init(&ctx->ioJobsMutex, NULL))
EXM_THROW(102,"Failed creating ioJobsMutex mutex");
/* We want MAX_IO_JOBS-2 queue items because we need to always have 1 free buffer to
* decompress into and 1 buffer that's actively written to disk and owned by the writing thread. */
assert(MAX_IO_JOBS >= 2);
ctx->threadPool = POOL_create(1, MAX_IO_JOBS - 2);
ctx->threadPoolActive = 1;
if (!ctx->threadPool)
EXM_THROW(104, "Failed creating I/O thread pool");
}
}
/* AIO_IOPool_init:
* Allocates and sets and a new I/O thread pool including its included availableJobs. */
static void AIO_IOPool_init(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs, POOL_function poolFunction, size_t bufferSize) {
int i;
AIO_IOPool_createThreadPool(ctx, prefs);
ctx->prefs = prefs;
ctx->poolFunction = poolFunction;
ctx->totalIoJobs = ctx->threadPool ? MAX_IO_JOBS : 2;
ctx->availableJobsCount = ctx->totalIoJobs;
for(i=0; i < ctx->availableJobsCount; i++) {
ctx->availableJobs[i] = AIO_IOPool_createIoJob(ctx, bufferSize);
}
ctx->jobBufferSize = bufferSize;
ctx->file = NULL;
}
/* AIO_IOPool_threadPoolActive:
* Check if current operation uses thread pool.
* Note that in some cases we have a thread pool initialized but choose not to use it. */
static int AIO_IOPool_threadPoolActive(IOPoolCtx_t* ctx) {
return ctx->threadPool && ctx->threadPoolActive;
}
/* AIO_IOPool_lockJobsMutex:
* Locks the IO jobs mutex if threading is active */
static void AIO_IOPool_lockJobsMutex(IOPoolCtx_t* ctx) {
if(AIO_IOPool_threadPoolActive(ctx))
ZSTD_pthread_mutex_lock(&ctx->ioJobsMutex);
}
/* AIO_IOPool_unlockJobsMutex:
* Unlocks the IO jobs mutex if threading is active */
static void AIO_IOPool_unlockJobsMutex(IOPoolCtx_t* ctx) {
if(AIO_IOPool_threadPoolActive(ctx))
ZSTD_pthread_mutex_unlock(&ctx->ioJobsMutex);
}
/* AIO_IOPool_releaseIoJob:
* Releases an acquired job back to the pool. Doesn't execute the job. */
static void AIO_IOPool_releaseIoJob(IOJob_t* job) {
IOPoolCtx_t* const ctx = (IOPoolCtx_t *) job->ctx;
AIO_IOPool_lockJobsMutex(ctx);
assert(ctx->availableJobsCount < ctx->totalIoJobs);
ctx->availableJobs[ctx->availableJobsCount++] = job;
AIO_IOPool_unlockJobsMutex(ctx);
}
/* AIO_IOPool_join:
* Waits for all tasks in the pool to finish executing. */
static void AIO_IOPool_join(IOPoolCtx_t* ctx) {
if(AIO_IOPool_threadPoolActive(ctx))
POOL_joinJobs(ctx->threadPool);
}
/* AIO_IOPool_setThreaded:
* Allows (de)activating threaded mode, to be used when the expected overhead
* of threading costs more than the expected gains. */
static void AIO_IOPool_setThreaded(IOPoolCtx_t* ctx, int threaded) {
assert(threaded == 0 || threaded == 1);
assert(ctx != NULL);
if(ctx->threadPoolActive != threaded) {
AIO_IOPool_join(ctx);
ctx->threadPoolActive = threaded;
}
}
/* AIO_IOPool_free:
* Release a previously allocated IO thread pool. Makes sure all tasks are done and released. */
static void AIO_IOPool_destroy(IOPoolCtx_t* ctx) {
int i;
if(ctx->threadPool) {
/* Make sure we finish all tasks and then free the resources */
AIO_IOPool_join(ctx);
/* Make sure we are not leaking availableJobs */
assert(ctx->availableJobsCount == ctx->totalIoJobs);
POOL_free(ctx->threadPool);
ZSTD_pthread_mutex_destroy(&ctx->ioJobsMutex);
}
assert(ctx->file == NULL);
for(i=0; i<ctx->availableJobsCount; i++) {
IOJob_t* job = (IOJob_t*) ctx->availableJobs[i];
free(job->buffer);
free(job);
}
}
/* AIO_IOPool_acquireJob:
* Returns an available io job to be used for a future io. */
static IOJob_t* AIO_IOPool_acquireJob(IOPoolCtx_t* ctx) {
IOJob_t* job;
assert(ctx->file != NULL || ctx->prefs->testMode);
AIO_IOPool_lockJobsMutex(ctx);
assert(ctx->availableJobsCount > 0);
job = (IOJob_t*) ctx->availableJobs[--ctx->availableJobsCount];
AIO_IOPool_unlockJobsMutex(ctx);
job->usedBufferSize = 0;
job->file = ctx->file;
job->offset = 0;
return job;
}
/* AIO_IOPool_setFile:
* Sets the destination file for future files in the pool.
* Requires completion of all queued jobs and release of all otherwise acquired jobs. */
static void AIO_IOPool_setFile(IOPoolCtx_t* ctx, FILE* file) {
assert(ctx!=NULL);
AIO_IOPool_join(ctx);
assert(ctx->availableJobsCount == ctx->totalIoJobs);
ctx->file = file;
}
static FILE* AIO_IOPool_getFile(const IOPoolCtx_t* ctx) {
return ctx->file;
}
/* AIO_IOPool_enqueueJob:
* Enqueues an io job for execution.
* The queued job shouldn't be used directly after queueing it. */
static void AIO_IOPool_enqueueJob(IOJob_t* job) {
IOPoolCtx_t* const ctx = (IOPoolCtx_t *)job->ctx;
if(AIO_IOPool_threadPoolActive(ctx))
POOL_add(ctx->threadPool, ctx->poolFunction, job);
else
ctx->poolFunction(job);
}
/* ***********************************
* WritePool implementation
*************************************/
/* AIO_WritePool_acquireJob:
* Returns an available write job to be used for a future write. */
IOJob_t* AIO_WritePool_acquireJob(WritePoolCtx_t* ctx) {
return AIO_IOPool_acquireJob(&ctx->base);
}
/* AIO_WritePool_enqueueAndReacquireWriteJob:
* Queues a write job for execution and acquires a new one.
* After execution `job`'s pointed value would change to the newly acquired job.
* Make sure to set `usedBufferSize` to the wanted length before call.
* The queued job shouldn't be used directly after queueing it. */
void AIO_WritePool_enqueueAndReacquireWriteJob(IOJob_t **job) {
AIO_IOPool_enqueueJob(*job);
*job = AIO_IOPool_acquireJob((IOPoolCtx_t *)(*job)->ctx);
}
/* AIO_WritePool_sparseWriteEnd:
* Ends sparse writes to the current file.
* Blocks on completion of all current write jobs before executing. */
void AIO_WritePool_sparseWriteEnd(WritePoolCtx_t* ctx) {
assert(ctx != NULL);
AIO_IOPool_join(&ctx->base);
AIO_fwriteSparseEnd(ctx->base.prefs, ctx->base.file, ctx->storedSkips);
ctx->storedSkips = 0;
}
/* AIO_WritePool_setFile:
* Sets the destination file for future writes in the pool.
* Requires completion of all queues write jobs and release of all otherwise acquired jobs.
* Also requires ending of sparse write if a previous file was used in sparse mode. */
void AIO_WritePool_setFile(WritePoolCtx_t* ctx, FILE* file) {
AIO_IOPool_setFile(&ctx->base, file);
assert(ctx->storedSkips == 0);
}
/* AIO_WritePool_getFile:
* Returns the file the writePool is currently set to write to. */
FILE* AIO_WritePool_getFile(const WritePoolCtx_t* ctx) {
return AIO_IOPool_getFile(&ctx->base);
}
/* AIO_WritePool_releaseIoJob:
* Releases an acquired job back to the pool. Doesn't execute the job. */
void AIO_WritePool_releaseIoJob(IOJob_t* job) {
AIO_IOPool_releaseIoJob(job);
}
/* AIO_WritePool_closeFile:
* Ends sparse write and closes the writePool's current file and sets the file to NULL.
* Requires completion of all queues write jobs and release of all otherwise acquired jobs. */
int AIO_WritePool_closeFile(WritePoolCtx_t* ctx) {
FILE* const dstFile = ctx->base.file;
assert(dstFile!=NULL || ctx->base.prefs->testMode!=0);
AIO_WritePool_sparseWriteEnd(ctx);
AIO_IOPool_setFile(&ctx->base, NULL);
return fclose(dstFile);
}
/* AIO_WritePool_executeWriteJob:
* Executes a write job synchronously. Can be used as a function for a thread pool. */
static void AIO_WritePool_executeWriteJob(void* opaque){
IOJob_t* const job = (IOJob_t*) opaque;
WritePoolCtx_t* const ctx = (WritePoolCtx_t*) job->ctx;
ctx->storedSkips = AIO_fwriteSparse(job->file, job->buffer, job->usedBufferSize, ctx->base.prefs, ctx->storedSkips);
AIO_IOPool_releaseIoJob(job);
}
/* AIO_WritePool_create:
* Allocates and sets and a new write pool including its included jobs. */
WritePoolCtx_t* AIO_WritePool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
WritePoolCtx_t* const ctx = (WritePoolCtx_t*) malloc(sizeof(WritePoolCtx_t));
if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
AIO_IOPool_init(&ctx->base, prefs, AIO_WritePool_executeWriteJob, bufferSize);
ctx->storedSkips = 0;
return ctx;
}
/* AIO_WritePool_free:
* Frees and releases a writePool and its resources. Closes destination file if needs to. */
void AIO_WritePool_free(WritePoolCtx_t* ctx) {
/* Make sure we finish all tasks and then free the resources */
if(AIO_WritePool_getFile(ctx))
AIO_WritePool_closeFile(ctx);
AIO_IOPool_destroy(&ctx->base);
assert(ctx->storedSkips==0);
free(ctx);
}
/* AIO_WritePool_setAsync:
* Allows (de)activating async mode, to be used when the expected overhead
* of asyncio costs more than the expected gains. */
void AIO_WritePool_setAsync(WritePoolCtx_t* ctx, int async) {
AIO_IOPool_setThreaded(&ctx->base, async);
}
/* ***********************************
* ReadPool implementation
*************************************/
static void AIO_ReadPool_releaseAllCompletedJobs(ReadPoolCtx_t* ctx) {
int i;
for(i=0; i<ctx->completedJobsCount; i++) {
IOJob_t* job = (IOJob_t*) ctx->completedJobs[i];
AIO_IOPool_releaseIoJob(job);
}
ctx->completedJobsCount = 0;
}
static void AIO_ReadPool_addJobToCompleted(IOJob_t* job) {
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
AIO_IOPool_lockJobsMutex(&ctx->base);
assert(ctx->completedJobsCount < MAX_IO_JOBS);
ctx->completedJobs[ctx->completedJobsCount++] = job;
if(AIO_IOPool_threadPoolActive(&ctx->base)) {
ZSTD_pthread_cond_signal(&ctx->jobCompletedCond);
}
AIO_IOPool_unlockJobsMutex(&ctx->base);
}
/* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked:
* Looks through the completed jobs for a job matching the waitingOnOffset and returns it,
* if job wasn't found returns NULL.
* IMPORTANT: assumes ioJobsMutex is locked. */
static IOJob_t* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ReadPoolCtx_t* ctx) {
IOJob_t *job = NULL;
int i;
/* This implementation goes through all completed jobs and looks for the one matching the next offset.
* While not strictly needed for a single threaded reader implementation (as in such a case we could expect
* reads to be completed in order) this implementation was chosen as it better fits other asyncio
* interfaces (such as io_uring) that do not provide promises regarding order of completion. */
for (i=0; i<ctx->completedJobsCount; i++) {
job = (IOJob_t *) ctx->completedJobs[i];
if (job->offset == ctx->waitingOnOffset) {
ctx->completedJobs[i] = ctx->completedJobs[--ctx->completedJobsCount];
return job;
}
}
return NULL;
}
/* AIO_ReadPool_numReadsInFlight:
* Returns the number of IO read jobs currently in flight. */
static size_t AIO_ReadPool_numReadsInFlight(ReadPoolCtx_t* ctx) {
const int jobsHeld = (ctx->currentJobHeld==NULL ? 0 : 1);
return (size_t)(ctx->base.totalIoJobs - (ctx->base.availableJobsCount + ctx->completedJobsCount + jobsHeld));
}
/* AIO_ReadPool_getNextCompletedJob:
* Returns a completed IOJob_t for the next read in line based on waitingOnOffset and advances waitingOnOffset.
* Would block. */
static IOJob_t* AIO_ReadPool_getNextCompletedJob(ReadPoolCtx_t* ctx) {
IOJob_t *job = NULL;
AIO_IOPool_lockJobsMutex(&ctx->base);
job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);
/* As long as we didn't find the job matching the next read, and we have some reads in flight continue waiting */
while (!job && (AIO_ReadPool_numReadsInFlight(ctx) > 0)) {
assert(ctx->base.threadPool != NULL); /* we shouldn't be here if we work in sync mode */
ZSTD_pthread_cond_wait(&ctx->jobCompletedCond, &ctx->base.ioJobsMutex);
job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);
}
if(job) {
assert(job->offset == ctx->waitingOnOffset);
ctx->waitingOnOffset += job->usedBufferSize;
}
AIO_IOPool_unlockJobsMutex(&ctx->base);
return job;
}
/* AIO_ReadPool_executeReadJob:
* Executes a read job synchronously. Can be used as a function for a thread pool. */
static void AIO_ReadPool_executeReadJob(void* opaque){
IOJob_t* const job = (IOJob_t*) opaque;
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
if(ctx->reachedEof) {
job->usedBufferSize = 0;
AIO_ReadPool_addJobToCompleted(job);
return;
}
job->usedBufferSize = fread(job->buffer, 1, job->bufferSize, job->file);
if(job->usedBufferSize < job->bufferSize) {
if(ferror(job->file)) {
EXM_THROW(37, "Read error");
} else if(feof(job->file)) {
ctx->reachedEof = 1;
} else {
EXM_THROW(37, "Unexpected short read");
}
}
AIO_ReadPool_addJobToCompleted(job);
}
static void AIO_ReadPool_enqueueRead(ReadPoolCtx_t* ctx) {
IOJob_t* const job = AIO_IOPool_acquireJob(&ctx->base);
job->offset = ctx->nextReadOffset;
ctx->nextReadOffset += job->bufferSize;
AIO_IOPool_enqueueJob(job);
}
static void AIO_ReadPool_startReading(ReadPoolCtx_t* ctx) {
while(ctx->base.availableJobsCount) {
AIO_ReadPool_enqueueRead(ctx);
}
}
/* AIO_ReadPool_setFile:
* Sets the source file for future read in the pool. Initiates reading immediately if file is not NULL.
* Waits for all current enqueued tasks to complete if a previous file was set. */
void AIO_ReadPool_setFile(ReadPoolCtx_t* ctx, FILE* file) {
assert(ctx!=NULL);
AIO_IOPool_join(&ctx->base);
AIO_ReadPool_releaseAllCompletedJobs(ctx);
if (ctx->currentJobHeld) {
AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
ctx->currentJobHeld = NULL;
}
AIO_IOPool_setFile(&ctx->base, file);
ctx->nextReadOffset = 0;
ctx->waitingOnOffset = 0;
ctx->srcBuffer = ctx->coalesceBuffer;
ctx->srcBufferLoaded = 0;
ctx->reachedEof = 0;
if(file != NULL)
AIO_ReadPool_startReading(ctx);
}
/* AIO_ReadPool_create:
* Allocates and sets and a new readPool including its included jobs.
* bufferSize should be set to the maximal buffer we want to read at a time, will also be used
* as our basic read size. */
ReadPoolCtx_t* AIO_ReadPool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
ReadPoolCtx_t* const ctx = (ReadPoolCtx_t*) malloc(sizeof(ReadPoolCtx_t));
if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
AIO_IOPool_init(&ctx->base, prefs, AIO_ReadPool_executeReadJob, bufferSize);
ctx->coalesceBuffer = (U8*) malloc(bufferSize * 2);
if(!ctx->coalesceBuffer) EXM_THROW(100, "Allocation error : not enough memory");
ctx->srcBuffer = ctx->coalesceBuffer;
ctx->srcBufferLoaded = 0;
ctx->completedJobsCount = 0;
ctx->currentJobHeld = NULL;
if(ctx->base.threadPool)
if (ZSTD_pthread_cond_init(&ctx->jobCompletedCond, NULL))
EXM_THROW(103,"Failed creating jobCompletedCond cond");
return ctx;
}
/* AIO_ReadPool_free:
* Frees and releases a readPool and its resources. Closes source file. */
void AIO_ReadPool_free(ReadPoolCtx_t* ctx) {
if(AIO_ReadPool_getFile(ctx))
AIO_ReadPool_closeFile(ctx);
if(ctx->base.threadPool)
ZSTD_pthread_cond_destroy(&ctx->jobCompletedCond);
AIO_IOPool_destroy(&ctx->base);
free(ctx->coalesceBuffer);
free(ctx);
}
/* AIO_ReadPool_consumeBytes:
* Consumes byes from srcBuffer's beginning and updates srcBufferLoaded accordingly. */
void AIO_ReadPool_consumeBytes(ReadPoolCtx_t* ctx, size_t n) {
assert(n <= ctx->srcBufferLoaded);
ctx->srcBufferLoaded -= n;
ctx->srcBuffer += n;
}
/* AIO_ReadPool_releaseCurrentlyHeldAndGetNext:
* Release the current held job and get the next one, returns NULL if no next job available. */
static IOJob_t* AIO_ReadPool_releaseCurrentHeldAndGetNext(ReadPoolCtx_t* ctx) {
if (ctx->currentJobHeld) {
AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
ctx->currentJobHeld = NULL;
AIO_ReadPool_enqueueRead(ctx);
}
ctx->currentJobHeld = AIO_ReadPool_getNextCompletedJob(ctx);
return (IOJob_t*) ctx->currentJobHeld;
}
/* AIO_ReadPool_fillBuffer:
* Tries to fill the buffer with at least n or jobBufferSize bytes (whichever is smaller).
* Returns if srcBuffer has at least the expected number of bytes loaded or if we've reached the end of the file.
* Return value is the number of bytes added to the buffer.
* Note that srcBuffer might have up to 2 times jobBufferSize bytes. */
size_t AIO_ReadPool_fillBuffer(ReadPoolCtx_t* ctx, size_t n) {
IOJob_t *job;
int useCoalesce = 0;
if(n > ctx->base.jobBufferSize)
n = ctx->base.jobBufferSize;
/* We are good, don't read anything */
if (ctx->srcBufferLoaded >= n)
return 0;
/* We still have bytes loaded, but not enough to satisfy caller. We need to get the next job
* and coalesce the remaining bytes with the next job's buffer */
if (ctx->srcBufferLoaded > 0) {
useCoalesce = 1;
memcpy(ctx->coalesceBuffer, ctx->srcBuffer, ctx->srcBufferLoaded);
ctx->srcBuffer = ctx->coalesceBuffer;
}
/* Read the next chunk */
job = AIO_ReadPool_releaseCurrentHeldAndGetNext(ctx);
if(!job)
return 0;
if(useCoalesce) {
assert(ctx->srcBufferLoaded + job->usedBufferSize <= 2*ctx->base.jobBufferSize);
memcpy(ctx->coalesceBuffer + ctx->srcBufferLoaded, job->buffer, job->usedBufferSize);
ctx->srcBufferLoaded += job->usedBufferSize;
}
else {
ctx->srcBuffer = (U8 *) job->buffer;
ctx->srcBufferLoaded = job->usedBufferSize;
}
return job->usedBufferSize;
}
/* AIO_ReadPool_consumeAndRefill:
* Consumes the current buffer and refills it with bufferSize bytes. */
size_t AIO_ReadPool_consumeAndRefill(ReadPoolCtx_t* ctx) {
AIO_ReadPool_consumeBytes(ctx, ctx->srcBufferLoaded);
return AIO_ReadPool_fillBuffer(ctx, ctx->base.jobBufferSize);
}
/* AIO_ReadPool_getFile:
* Returns the current file set for the read pool. */
FILE* AIO_ReadPool_getFile(const ReadPoolCtx_t* ctx) {
return AIO_IOPool_getFile(&ctx->base);
}
/* AIO_ReadPool_closeFile:
* Closes the current set file. Waits for all current enqueued tasks to complete and resets state. */
int AIO_ReadPool_closeFile(ReadPoolCtx_t* ctx) {
FILE* const file = AIO_ReadPool_getFile(ctx);
AIO_ReadPool_setFile(ctx, NULL);
return fclose(file);
}
/* AIO_ReadPool_setAsync:
* Allows (de)activating async mode, to be used when the expected overhead
* of asyncio costs more than the expected gains. */
void AIO_ReadPool_setAsync(ReadPoolCtx_t* ctx, int async) {
AIO_IOPool_setThreaded(&ctx->base, async);
}
|