1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/**
* This fuzz target performs a zstd round-trip test by generating an arbitrary
* array of sequences, generating the associated source buffer, calling
* ZSTD_compressSequences(), and then decompresses and compares the result with
* the original generated source buffer.
*/
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd_errors.h"
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "fuzz_helpers.h"
#include "zstd_helpers.h"
#include "fuzz_data_producer.h"
#include "fuzz_third_party_seq_prod.h"
static ZSTD_CCtx* cctx = NULL;
static ZSTD_DCtx* dctx = NULL;
static void* literalsBuffer = NULL;
static void* generatedSrc = NULL;
static ZSTD_Sequence* generatedSequences = NULL;
static void* dictBuffer = NULL;
static ZSTD_CDict* cdict = NULL;
static ZSTD_DDict* ddict = NULL;
#define ZSTD_FUZZ_GENERATED_SRC_MAXSIZE (1 << 20) /* Allow up to 1MB generated data */
#define ZSTD_FUZZ_GENERATED_LITERALS_SIZE (1 << 20) /* Fixed size 1MB literals buffer */
#define ZSTD_FUZZ_MATCHLENGTH_MAXSIZE (1 << 18) /* Allow up to 256KB matches */
#define ZSTD_FUZZ_GENERATED_DICT_MAXSIZE (1 << ZSTD_WINDOWLOG_MAX_32) /* Allow up to 1 << ZSTD_WINDOWLOG_MAX_32 dictionary */
#define ZSTD_FUZZ_MAX_NBSEQ (1 << 17) /* Maximum of 128K sequences */
/* Deterministic random number generator */
#define FUZZ_RDG_rotl32(x,r) ((x << r) | (x >> (32 - r)))
static uint32_t FUZZ_RDG_rand(uint32_t* src)
{
static const uint32_t prime1 = 2654435761U;
static const uint32_t prime2 = 2246822519U;
uint32_t rand32 = *src;
rand32 *= prime1;
rand32 ^= prime2;
rand32 = FUZZ_RDG_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
/* Make a pseudorandom string - this simple function exists to avoid
* taking a dependency on datagen.h to have RDG_genBuffer().
*/
static char* generatePseudoRandomString(char* str, size_t size, FUZZ_dataProducer_t* producer) {
const char charset[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJK1234567890!@#$^&*()_";
uint32_t seed = FUZZ_dataProducer_uint32(producer);
if (size) {
for (size_t n = 0; n < size; n++) {
int key = FUZZ_RDG_rand(&seed) % (int) (sizeof charset - 1);
str[n] = charset[key];
}
}
return str;
}
/* Returns size of source buffer */
static size_t decodeSequences(void* dst, size_t nbSequences,
size_t literalsSize,
const void* dict, size_t dictSize,
ZSTD_SequenceFormat_e mode)
{
const uint8_t* litPtr = literalsBuffer;
const uint8_t* const litBegin = literalsBuffer;
const uint8_t* const litEnd = litBegin + literalsSize;
const uint8_t* dictPtr = dict;
uint8_t* op = dst;
const uint8_t* const oend = (uint8_t*)dst + ZSTD_FUZZ_GENERATED_SRC_MAXSIZE;
size_t generatedSrcBufferSize = 0;
size_t bytesWritten = 0;
for (size_t i = 0; i < nbSequences; ++i) {
/* block boundary */
if (generatedSequences[i].offset == 0)
FUZZ_ASSERT(generatedSequences[i].matchLength == 0);
if (litPtr + generatedSequences[i].litLength > litEnd) {
litPtr = litBegin;
}
memcpy(op, litPtr, generatedSequences[i].litLength);
bytesWritten += generatedSequences[i].litLength;
op += generatedSequences[i].litLength;
litPtr += generatedSequences[i].litLength;
/* Copy over the match */
{ size_t matchLength = generatedSequences[i].matchLength;
size_t j = 0;
size_t k = 0;
if (dictSize != 0) {
if (generatedSequences[i].offset > bytesWritten) { /* Offset goes into the dictionary */
size_t dictOffset = generatedSequences[i].offset - bytesWritten;
size_t matchInDict = MIN(matchLength, dictOffset);
for (; k < matchInDict; ++k) {
op[k] = dictPtr[dictSize - dictOffset + k];
}
matchLength -= matchInDict;
op += matchInDict;
}
}
for (; j < matchLength; ++j) {
op[j] = op[(ptrdiff_t)(j - generatedSequences[i].offset)];
}
op += j;
FUZZ_ASSERT(generatedSequences[i].matchLength == j + k);
bytesWritten += generatedSequences[i].matchLength;
}
}
generatedSrcBufferSize = bytesWritten;
FUZZ_ASSERT(litPtr <= litEnd);
if (mode == ZSTD_sf_noBlockDelimiters) {
const uint32_t lastLLSize = (uint32_t)(litEnd - litPtr);
if (lastLLSize <= (uint32_t)(oend - op)) {
memcpy(op, litPtr, lastLLSize);
generatedSrcBufferSize += lastLLSize;
} }
return generatedSrcBufferSize;
}
/* Returns nb sequences generated
* Note : random sequences are always valid in ZSTD_sf_noBlockDelimiters mode.
* However, it can fail with ZSTD_sf_explicitBlockDelimiters,
* due to potential lack of space in
*/
static size_t generateRandomSequences(FUZZ_dataProducer_t* producer,
size_t literalsSizeLimit, size_t dictSize,
size_t windowLog, ZSTD_SequenceFormat_e mode)
{
const uint32_t repCode = 0; /* not used by sequence ingestion api */
size_t windowSize = 1ULL << windowLog;
size_t blockSizeMax = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
uint32_t matchLengthMax = ZSTD_FUZZ_MATCHLENGTH_MAXSIZE;
uint32_t bytesGenerated = 0;
uint32_t nbSeqGenerated = 0;
uint32_t isFirstSequence = 1;
uint32_t blockSize = 0;
if (mode == ZSTD_sf_explicitBlockDelimiters) {
/* ensure that no sequence can be larger than one block */
literalsSizeLimit = MIN(literalsSizeLimit, blockSizeMax/2);
matchLengthMax = MIN(matchLengthMax, (uint32_t)blockSizeMax/2);
}
while ( nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ - 3 /* extra room for explicit delimiters */
&& bytesGenerated < ZSTD_FUZZ_GENERATED_SRC_MAXSIZE
&& !FUZZ_dataProducer_empty(producer)) {
uint32_t matchLength;
uint32_t matchBound = matchLengthMax;
uint32_t offset;
uint32_t offsetBound;
const uint32_t minLitLength = (isFirstSequence && (dictSize == 0));
const uint32_t litLength = FUZZ_dataProducer_uint32Range(producer, minLitLength, (uint32_t)literalsSizeLimit);
bytesGenerated += litLength;
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
break;
}
offsetBound = (bytesGenerated > windowSize) ? (uint32_t)windowSize : bytesGenerated + (uint32_t)dictSize;
offset = FUZZ_dataProducer_uint32Range(producer, 1, offsetBound);
if (dictSize > 0 && bytesGenerated <= windowSize) {
/* Prevent match length from being such that it would be associated with an offset too large
* from the decoder's perspective. If not possible (match would be too small),
* then reduce the offset if necessary.
*/
const size_t bytesToReachWindowSize = windowSize - bytesGenerated;
if (bytesToReachWindowSize < ZSTD_MINMATCH_MIN) {
const uint32_t newOffsetBound = offsetBound > windowSize ? (uint32_t)windowSize : offsetBound;
offset = FUZZ_dataProducer_uint32Range(producer, 1, newOffsetBound);
} else {
matchBound = MIN(matchLengthMax, (uint32_t)bytesToReachWindowSize);
}
}
matchLength = FUZZ_dataProducer_uint32Range(producer, ZSTD_MINMATCH_MIN, matchBound);
bytesGenerated += matchLength;
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
break;
}
{ ZSTD_Sequence seq = {offset, litLength, matchLength, repCode};
const uint32_t lastLits = FUZZ_dataProducer_uint32Range(producer, 0, litLength);
#define SPLITPROB 6000
#define SPLITMARK 5234
const int split = (FUZZ_dataProducer_uint32Range(producer, 0, SPLITPROB) == SPLITMARK);
if (mode == ZSTD_sf_explicitBlockDelimiters) {
const size_t seqSize = seq.litLength + seq.matchLength;
if (blockSize + seqSize > blockSizeMax) { /* reaching limit : must end block now */
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
generatedSequences[nbSeqGenerated++] = endBlock;
blockSize = (uint32_t)seqSize;
}
if (split) {
const ZSTD_Sequence endBlock = {0, lastLits, 0, 0};
generatedSequences[nbSeqGenerated++] = endBlock;
assert(lastLits <= seq.litLength);
seq.litLength -= lastLits;
blockSize = (uint32_t)(seqSize - lastLits);
} else {
blockSize += seqSize;
}
}
generatedSequences[nbSeqGenerated++] = seq;
isFirstSequence = 0;
}
}
if (mode == ZSTD_sf_explicitBlockDelimiters) {
/* always end sequences with a block delimiter */
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
assert(nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ);
generatedSequences[nbSeqGenerated++] = endBlock;
}
return nbSeqGenerated;
}
static size_t
transferLiterals(void* dst, size_t dstCapacity, const ZSTD_Sequence* seqs, size_t nbSeqs, const void* src, size_t srcSize)
{
size_t n;
char* op = dst;
char* const oend = op + dstCapacity;
const char* ip = src;
const char* const iend = ip + srcSize;
for (n=0; n<nbSeqs; n++) {
size_t litLen = seqs[n].litLength;
size_t mlen = seqs[n].matchLength;
assert(op + litLen < oend); (void)oend;
assert(ip + litLen + mlen <= iend); (void)iend;
memcpy(op, ip, litLen);
op += litLen;
ip += litLen + mlen;
}
assert(oend - op >= 8);
return (size_t)(op - (char*)dst);
}
static size_t roundTripTest_compressSequencesAndLiterals(
void* result, size_t resultCapacity,
void* compressed, size_t compressedCapacity,
const void* src, size_t srcSize,
const ZSTD_Sequence* seqs, size_t nbSeqs)
{
size_t const litCapacity = srcSize + 8;
void* literals = malloc(litCapacity);
size_t cSize, litSize;
assert(literals);
litSize = transferLiterals(literals, litCapacity, seqs, nbSeqs, src, srcSize);
cSize = ZSTD_compressSequencesAndLiterals(cctx,
compressed, compressedCapacity,
seqs, nbSeqs,
literals, litSize, litCapacity, srcSize);
free(literals);
if (ZSTD_getErrorCode(cSize) == ZSTD_error_cannotProduce_uncompressedBlock) {
/* Valid scenario : ZSTD_compressSequencesAndLiterals cannot generate uncompressed blocks */
return 0;
}
if (ZSTD_getErrorCode(cSize) == ZSTD_error_dstSize_tooSmall) {
/* Valid scenario : in explicit delimiter mode,
* it might be possible for the compressed size to outgrow dstCapacity.
* In which case, it's still a valid fuzzer scenario,
* but no roundtrip shall be possible */
return 0;
}
/* round-trip */
FUZZ_ZASSERT(cSize);
{ size_t const dSize = ZSTD_decompressDCtx(dctx, result, resultCapacity, compressed, cSize);
FUZZ_ZASSERT(dSize);
FUZZ_ASSERT_MSG(dSize == srcSize, "Incorrect regenerated size");
FUZZ_ASSERT_MSG(!FUZZ_memcmp(src, result, srcSize), "Corruption!");
return dSize;
}
}
static size_t roundTripTest(void* result, size_t resultCapacity,
void* compressed, size_t compressedCapacity,
const void* src, size_t srcSize,
const ZSTD_Sequence* seqs, size_t nbSeqs,
unsigned hasDict,
ZSTD_SequenceFormat_e mode)
{
size_t cSize;
size_t dSize;
if (hasDict) {
FUZZ_ZASSERT(ZSTD_CCtx_refCDict(cctx, cdict));
FUZZ_ZASSERT(ZSTD_DCtx_refDDict(dctx, ddict));
}
{ int blockMode, validation;
/* compressSequencesAndLiterals() only supports explicitBlockDelimiters and no validation */
FUZZ_ZASSERT(ZSTD_CCtx_getParameter(cctx, ZSTD_c_blockDelimiters, &blockMode));
FUZZ_ZASSERT(ZSTD_CCtx_getParameter(cctx, ZSTD_c_validateSequences, &validation));
if ((blockMode == ZSTD_sf_explicitBlockDelimiters) && (!validation)) {
FUZZ_ZASSERT(roundTripTest_compressSequencesAndLiterals(result, resultCapacity, compressed, compressedCapacity, src, srcSize, seqs, nbSeqs));
}
}
cSize = ZSTD_compressSequences(cctx, compressed, compressedCapacity,
seqs, nbSeqs,
src, srcSize);
if ( (ZSTD_getErrorCode(cSize) == ZSTD_error_dstSize_tooSmall)
&& (mode == ZSTD_sf_explicitBlockDelimiters) ) {
/* Valid scenario : in explicit delimiter mode,
* it might be possible for the compressed size to outgrow dstCapacity.
* In which case, it's still a valid fuzzer scenario,
* but no roundtrip shall be possible */
return 0;
}
/* round-trip */
FUZZ_ZASSERT(cSize);
dSize = ZSTD_decompressDCtx(dctx, result, resultCapacity, compressed, cSize);
FUZZ_ZASSERT(dSize);
FUZZ_ASSERT_MSG(dSize == srcSize, "Incorrect regenerated size");
FUZZ_ASSERT_MSG(!FUZZ_memcmp(src, result, srcSize), "Corruption!");
return dSize;
}
int LLVMFuzzerTestOneInput(const uint8_t* src, size_t size)
{
FUZZ_SEQ_PROD_SETUP();
void* rBuf;
size_t rBufSize;
void* cBuf;
size_t cBufSize;
size_t generatedSrcSize;
size_t nbSequences;
size_t dictSize = 0;
unsigned hasDict;
unsigned wLog;
int cLevel;
ZSTD_SequenceFormat_e mode;
FUZZ_dataProducer_t* const producer = FUZZ_dataProducer_create(src, size);
FUZZ_ASSERT(producer);
if (!cctx) {
cctx = ZSTD_createCCtx();
FUZZ_ASSERT(cctx);
}
if (!dctx) {
dctx = ZSTD_createDCtx();
FUZZ_ASSERT(dctx);
}
/* Generate window log first so we don't generate offsets too large */
wLog = FUZZ_dataProducer_uint32Range(producer, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
cLevel = FUZZ_dataProducer_int32Range(producer, -3, 22);
mode = (ZSTD_SequenceFormat_e)FUZZ_dataProducer_int32Range(producer, 0, 1);
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 0);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, cLevel);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, (int)wLog);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_minMatch, ZSTD_MINMATCH_MIN);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_validateSequences, 1);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_blockDelimiters, (int)mode);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_forceAttachDict, ZSTD_dictForceAttach);
if (!literalsBuffer) {
literalsBuffer = FUZZ_malloc(ZSTD_FUZZ_GENERATED_LITERALS_SIZE);
FUZZ_ASSERT(literalsBuffer);
literalsBuffer = generatePseudoRandomString(literalsBuffer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, producer);
}
if (!dictBuffer) { /* Generate global dictionary buffer */
ZSTD_compressionParameters cParams;
/* Generate a large dictionary buffer */
dictBuffer = calloc(ZSTD_FUZZ_GENERATED_DICT_MAXSIZE, 1);
FUZZ_ASSERT(dictBuffer);
/* Create global cdict and ddict */
cParams = ZSTD_getCParams(1, ZSTD_FUZZ_GENERATED_SRC_MAXSIZE, ZSTD_FUZZ_GENERATED_DICT_MAXSIZE);
cParams.minMatch = ZSTD_MINMATCH_MIN;
cParams.hashLog = ZSTD_HASHLOG_MIN;
cParams.chainLog = ZSTD_CHAINLOG_MIN;
cdict = ZSTD_createCDict_advanced(dictBuffer, ZSTD_FUZZ_GENERATED_DICT_MAXSIZE, ZSTD_dlm_byRef, ZSTD_dct_rawContent, cParams, ZSTD_defaultCMem);
ddict = ZSTD_createDDict_advanced(dictBuffer, ZSTD_FUZZ_GENERATED_DICT_MAXSIZE, ZSTD_dlm_byRef, ZSTD_dct_rawContent, ZSTD_defaultCMem);
FUZZ_ASSERT(cdict);
FUZZ_ASSERT(ddict);
}
FUZZ_ASSERT(cdict);
FUZZ_ASSERT(ddict);
hasDict = FUZZ_dataProducer_uint32Range(producer, 0, 1);
if (hasDict) {
dictSize = ZSTD_FUZZ_GENERATED_DICT_MAXSIZE;
}
if (!generatedSequences) {
generatedSequences = FUZZ_malloc(sizeof(ZSTD_Sequence)*ZSTD_FUZZ_MAX_NBSEQ);
}
if (!generatedSrc) {
generatedSrc = FUZZ_malloc(ZSTD_FUZZ_GENERATED_SRC_MAXSIZE);
}
nbSequences = generateRandomSequences(producer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictSize, wLog, mode);
generatedSrcSize = decodeSequences(generatedSrc, nbSequences, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictBuffer, dictSize, mode);
/* Note : in explicit block delimiters mode,
* the fuzzer might generate a lot of small blocks.
* In which case, the final compressed size might be > ZSTD_compressBound().
* This is still a valid scenario fuzzer though, which makes it possible to check under-sized dstCapacity.
* The test just doesn't roundtrip. */
cBufSize = ZSTD_compressBound(generatedSrcSize);
cBuf = FUZZ_malloc(cBufSize);
rBufSize = generatedSrcSize;
rBuf = FUZZ_malloc(rBufSize);
{ const size_t result = roundTripTest(rBuf, rBufSize,
cBuf, cBufSize,
generatedSrc, generatedSrcSize,
generatedSequences, nbSequences,
hasDict, mode);
FUZZ_ASSERT(result <= generatedSrcSize); /* can be 0 when no round-trip */
}
free(rBuf);
free(cBuf);
FUZZ_dataProducer_free(producer);
#ifndef STATEFUL_FUZZING
ZSTD_freeCCtx(cctx); cctx = NULL;
ZSTD_freeDCtx(dctx); dctx = NULL;
free(generatedSequences); generatedSequences = NULL;
free(generatedSrc); generatedSrc = NULL;
free(literalsBuffer); literalsBuffer = NULL;
#endif
FUZZ_SEQ_PROD_TEARDOWN();
return 0;
}
|