1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#include "lie.h"
#define local static
#include <string.h>
#define two_lengths(type) (strchr("BCFG",type)!=NULL)
#define grp_less(x,y) \
((x)->lietype<(y)->lietype \
|| (x)->lietype==(y)->lietype && (x)->lierank<(y)->lierank)
#define opposite(a,b) adj[b][adj[b][0]==(a)]
local void fundam(matrix* roots, index first, index* last);
local index s; /* the current semisimple rank */
local simpgrp* simp_type(entry** m, entry n)
{ matrix* adjs=mkmatrix(n,3);
entry** adj=adjs->elm /* |adj[i]| lists up to 3 neighbours of node |i| */
,* norm=mkintarray(3*n) /* norms of roots */
,* valency=&norm[n] /* valencies in Dynkin diagram */
,* p=&valency[n]; /* permutation of |n| */
simpgrp* result;
index i,j,k, a_val[4]={-1,-1,-1,-1};
/* |a_val[i]| is index of a node of valency |i|, if any */
if (n==0) error("empty input in simp_type\n");
{ for (i=0;i<n;i++) valency[i]=0;
/* |valency[i]| is also index of next slot in |adj[i]| */
for (i=n; --i>=0;)
{ norm[i]= Norm(m[i]); /* where |Norm(x)==Inprod(x,x)/2| */
for (j=i; --j>=0;)
if (Inprod(m[i],m[j])!=0) /* then valencies increase */
{ if (valency[i]>=3 || valency[j]>=3) error ("valency >3 found\n");
adj[i][valency[i]++]=j; adj[j][valency[j]++]=i;
/* update valencies and adjacencies */
}
a_val[valency[i]]=i; /* valency of node |i| is now known */
}
}
if (a_val[3]<0)
{ index e; /* index of end node (|valency[e]<=1|) */
if (a_val[0]>=0) p[0]=e=a_val[0]; /* must be type $A_1$ */
else
{ if (a_val[1]>=0) p[0]=e=a_val[1]; /* other linear types */
else error("no end node found\n");
{ k=p[1]=adj[e][0]; /* the unique neighbour of node |e| */
for(i=2;i<n;i++) p[i]=k=opposite(p[i-2],k); /* here |k==p[i-1]| */
}
if ( n==2 && norm[p[0]]+2*norm[p[1]]==5
|| n>=3 && norm[p[0]]!=norm[p[1]]
|| n==4 && norm[p[1]]<norm[p[2]]
)
{ for (i=0; i<n-1-i; i++) swap(&p[i],&p[n-1-i]); e=p[0]; }
}
{ entry norm0=norm[p[0]], norm1=norm[p[n-1]];
if (norm0==norm1) result = mksimpgrp('A',n);
else if (norm1==3) result=mksimpgrp('G',2);
else if (norm1==2) result=mksimpgrp('C',n);
else if (norm0!=2) error("I don't recognize this Cartan Type\n");
else if (n==4 && norm[p[2]]==1) result=mksimpgrp('F',4);
else result=mksimpgrp('B',n);
}
}
/* no nodes of valency 3 */
else
{ entry* branch=adj[a_val[3]], end[3], end_count=0;
for (j=2; j>=0; j--)
if (valency[branch[j]]==1) end[end_count++]=branch[j];
if (end_count>1)
{ p[n-1]=end[1]; p[n-2]=end[0]; p[n-3]=a_val[3];
k=p[n-4]=branch[0]+branch[1]+branch[2]-p[n-1]-p[n-2];
/* the remaining branch */
for(i=n-5; i>=0; i--)
{ if (valency[k]!=2) error("unlinear Dn tail.\n");
p[i]=k=opposite(p[i+2],k);
}
result=mksimpgrp('D',n);
}
else if (end_count==1)
{ p[3]=a_val[3]; p[1]=end[0];
for (j=2; j>=0; j--)
if (valency[branch[j]]==2)
if (valency[opposite(a_val[3],branch[j])]==1) break;
if (j<0) error("type E not recognised\n");
p[2]=branch[j]; p[0]=opposite(p[3],p[2]);
p[4]=k=branch[0]+branch[1]+branch[2]-p[1]-p[2]; /* remaining branch */
for(i=5;i<n;i++)
{ if (valency[k]!=2) error("wrong type E system.\n");
p[i]=k=opposite(p[i-2],k);
}
result=mksimpgrp('E',n);
}
else error("no end node adjacent to valency 3 node\n");
}
for (i=0; i<n; i++) if (p[i]>=0) /* then |p[i]| starts an untreated cycle */
{ entry* mi=m[j=i]; /* record beginning of cycle */
while (p[j]!=i)
{ k=j; j=p[j]; m[k]=m[j]; p[k]= -1; }
/* assign |m[j]=m[p[j]]| and advance */
m[j]=mi; p[j]= -1; /* close the cycle */
}
freemem(adjs); freearr(norm);
return result;
}
static void cycle_block(matrix* m, index first, index last, index amount)
{ entry** row=&m->elm[first]; index modulus=last-first,i,min_done=amount;
if (amount>0 && modulus>amount) /* otherwise there is nothing to do */
for (i=0; i<min_done; ++i) /* |min_done| is fixed after first time round */
{ entry* row_i=row[i]; index j=i+amount,old_j=i;
do /* perform cycle containing |i| */
{ row[old_j]=row[j]; old_j=j;
if ((j+=amount)>=modulus) j-=modulus; /* wrap downwards */
} while (j>=min_done || j>i && (min_done=j,true));
row[old_j]=row_i; /* close the cycle */
if (j!=i) error("System error cycling.\n");
}
}
local void long_close(matrix* m, index first, index last)
{ index i,j; entry* root_i,* root_j,* t=mkintarray(s);
for (i=first; i<last; ++i)
{ root_i=m->elm[i]; if (Norm(root_i)>1) continue;
for (j=i+1; j<last; ++j)
{ root_j=m->elm[j]; if (Norm(root_j)>1) continue;
subrow(root_i,root_j,t,s);
if (isroot(t))
if (isposroot(t))
{ copyrow(t,root_i,s); break; } /* need not consider more |j|'s */
else add_xrow_to(root_j,-1,root_i,s);
}
}
freearr(t);
}
matrix* Closure(matrix* m, boolean close, group* lie_type)
{ matrix* result; index i,j;
group* tp=(s=Ssrank(grp), lie_type==NULL ? mkgroup(s) : lie_type);
tp->toraldim=Lierank(grp); tp->ncomp=0; /* start with maximal torus */
m=copymatrix(m);
if (close)
if (type_of(grp)==SIMPGRP) close = two_lengths(grp->s.lietype);
else
{ for (i=0; i<grp->g.ncomp; i++)
if (two_lengths(Liecomp(grp,i)->lietype)) break;
close= i<grp->g.ncomp;
}
{ entry* t;
for (i=0; i<m->nrows; i++)
if (!isroot(t=m->elm[i]))
error("Set of root vectors contains a non-root\n");
else if (!isposroot(t=m->elm[i]))
for (j=0; j<m->ncols; j++) t[j]= -t[j]; /* make positive root */
Unique(m,cmpfn);
}
{ index next;
for (i=0; i<m->nrows; i=next)
{ index d,n=0; simpgrp* c;
next=isolcomp(m,i);
fundam(m,i,&next);
if (close) long_close(m,i,next),fundam(m,i,&next);
c=simp_type(&m->elm[i],d=next-i);
{ j=tp->ncomp++;
while(--j>=0 && grp_less(tp->liecomp[j],c))
n += (tp->liecomp[j+1]=tp->liecomp[j])->lierank;
tp->liecomp[++j]=c; tp->toraldim -= d;
/* insert component and remove rank from torus */
cycle_block(m,i-n,next,n);
/* move the |d| rows down across |n| previous rows */
}
}
}
if (lie_type==NULL)
return result=copymatrix(m),freemem(m),freemem(tp),result;
else return freemem(m),(matrix*)NULL; /* |Cartan_type| doesn't need |m| */
}
group* Carttype(matrix* m)
{ group* type=mkgroup(s=Ssrank(grp)); /* rank bounds number of components */
Closure(m,false,type); return type;
}
local void fundam(matrix* roots, index first, index* last)
{ index i,j,d; boolean changed;
entry* t=mkintarray(s); matrix mm,* m=&mm;
mm.elm=&roots->elm[first]; mm.nrows=*last-first; mm.ncols=roots->ncols;
for (i=m->nrows-1; i>0; changed ? Unique(m,cmpfn),i=m->nrows-1 : --i)
{ entry* root_i=m->elm[i]; changed=false;
for (j=i-1; j>=0; j--)
{ entry* root_j=m->elm[j]; entry c=Cart_inprod(root_j,root_i);
if (c==2 && eqrow(root_j,root_i,s))
{ cycle_block(m,j,m->nrows--,1); root_i=m->elm[--i];
}
else if (c>0)
{ changed=true;
{ copyrow(root_j,t,s); add_xrow_to(t,-c,root_i,s);
if (isposroot(t)) copyrow(t,root_j,s);
else
{ j=i; c=Cart_inprod(root_i,root_j);
copyrow(root_i,t,s); add_xrow_to(t,-c,root_j,s);
if (isposroot(t)) copyrow(t,root_i,s);
else
{ index k; entry* ln,* sh; /* the longer and the shorter root */
if (Norm(root_i)>Norm(root_j))
ln=root_i, sh=root_j; else ln=root_j, sh=root_i;
switch (Norm(ln))
{ case 2: subrow(ln,sh,sh,s); /* |sh=ln-sh| */
add_xrow_to(ln,-2,sh,s); /* |ln=ln-2*sh| */
break; case 3: /* |grp=@t$G_2$@>| now */
for (k=0; sh[k]==0; ++k) {} /* find the place of this $G_2$ component */
sh[k]=1; sh[k+1]=0; ln[k]=0; ln[k+1]=1;
/* return standard basis of full system */
break; default: error("problem with norm 1 roots\n");
}
}
}
}
}
}
}
cycle_block(roots,first+mm.nrows,roots->nrows,d=*last-first-mm.nrows);
*last-=d; roots->nrows-=d;
freearr(t);
}
matrix* Resmat(matrix* roots)
{ index i,j,k,r=Lierank(grp),s=Ssrank(grp), n=roots->nrows;
vector* root_norms=Simproot_norms(grp);
entry* norms=root_norms->compon;
/* needed to compute $\<\lambda,\alpha[i]>$ */
matrix* root_images=Matmult(roots,Cartan()),* result=mkmatrix(r,r);
entry** alpha=roots->elm,** img=root_images->elm,** res=result->elm;
for (i=0; i<r; i++) for (j=0; j<r; j++) res[i][j]= i==j;
/* initialise |res| to identity */
for (j=0; j<n; j++) /* traverse the given roots */
{ entry* v=img[j], norm=(checkroot(alpha[j]),Norm(alpha[j]));
for (k=s-1; v[k]==0; k--) {}
if (k<j)
error("Given set of roots is not independent; apply closure first.\n");
if (v[k]<0)
{ for (i=j; i<n; i++) img[i][k]= -img[i][k];
for (i=k-j; i<s; i++) res[i][k]= -res[i][k];
}
while(--k>=j)
/* clear |v[k+1]| by unimodular column operations with column~|j| */
{
entry u[3][2]; index l=0;
u[0][1]=u[1][0]=1; u[0][0]=u[1][1]=0;
u[2][1]=v[k]; u[2][0]=v[k+1];
if (v[k]<0) u[2][1]= -v[k], u[0][1]= -1; /* make |u[2][1]| non-negative */
do /* subtract column |l| some times into column |1-l| */
{ entry q=u[2][1-l]/u[2][l]; for (i=0; i<3; i++) u[i][1-l]-=q*u[i][l];
} while (u[2][l=1-l]!=0);
if (l==0) for (i=0; i<2; i++) swap(&u[i][0],&u[i][1]);
{ for (i=j; i<n; i++) /* combine columns |k| and |k+1| */
{ entry img_i_k=img[i][k];
img[i][k] =img_i_k*u[0][0]+img[i][k+1]*u[1][0];
img[i][k+1]=img_i_k*u[0][1]+img[i][k+1]*u[1][1];
}
for (i=k-j; i<s; i++)
{ entry res_i_k=res[i][k];
res[i][k]=res_i_k*u[0][0]+res[i][k+1]*u[1][0];
res[i][k+1]=res_i_k*u[0][1]+res[i][k+1]*u[1][1];
}
}
}
for (i=0; i<s; i++)
{ index inpr= norms[i]*alpha[j][i]; /* this is $(\omega_i,\alpha[j])$ */
if (inpr%norm!=0) error("Supposed root has non-integer Cartan product.\n");
res[i][j]=inpr/norm; /* this is $\<\omega_i,\alpha[j]>$ */
}
}
freemem(root_norms); freemem(root_images); return result;
}
|