File: static3.c

package info (click to toggle)
lie 2.2.2%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch, wheezy
  • size: 1,000 kB
  • ctags: 1,801
  • sloc: ansic: 12,761; yacc: 395; makefile: 150; sh: 4
file content (981 lines) | stat: -rw-r--r-- 38,527 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/* Group operations */
#include "lie.h"

static void check_wt(vector* lambda, index r)
{ if (lambda->ncomp!=r) error("Size of weight should equal Lie rank.\n"); }

static void check_wts(matrix* m, index r)
{ if (m->ncols!=r) error("Size of weights should equal Lie rank.\n"); }

static void check_rt(vector* rt, index s)
{ if (rt->ncomp!=s) error("Size of root should equal semisimple rank.\n"); }

static void check_rts(matrix* m, index s)
{ if (m->ncols!=s) error("Size of roots should equal semisimple rank.\n"); }

static void check_toral(vector* t, index r, index lim)
{ if (t->ncomp!=r+1)
    error("Size of toral element should equal Lie rank + 1.\n");
  if (t->compon[r]<lim)
  { error("Final entry of toral element should %stive.\n"
	 , lim ? "be posi" : "not be nega");
  }
}

static void check_torals(matrix* m, index r)
{ index i;
  if (m->ncols!=r+1)
    error("Size of toral elements should equal Lie rank + 1.\n");
  for (i=0; i<m->nrows; i++) if (m->elm[i][r]<0)
    error("Final entry of toral elements should not be negative.\n");
}

void testdom(entry* v, object grp)
{ index j, s=Ssrank(grp);
  for(j=0; j<s; j++) if (*v++<0) error ("Weight is not dominant\n");
}

static void check_Ww(vector* ww, index s)
{ index i,l=ww->ncomp; entry* w=ww->compon;
  for (i=0; i<l; i++)
    if (w[i]<0) error("Weyl word entries should not be negative.\n");
    else if (w[i]>s)
      error("Weyl word entries should not exceed semisimple rank.\n");
}

static void check_Wws(matrix* m, index s)
{ index i,j,l=m->ncols;
  for (i=0; i<m->nrows; i++)
  { entry* w=m->elm[i];
    for (j=0; j<l; j++) 
      if (w[j]<0) error("Weyl word entries should not be negative.\n");
      else if (w[j]>s)
	error("Weyl word entries should not exceed semisimple rank.\n");
  }
}

object int_eq_grp_grp(g1,g2) object g1,g2; /* used externally (decomp) */
{ index i;
  if (g1->g.ncomp!=g2->g.ncomp || g1->g.toraldim!=g2->g.toraldim)
    return (object) bool_false;
  for (i=0; i<g1->g.ncomp; i++)
  { simpgrp* s1=Liecomp(g1,i); simpgrp* s2=Liecomp(g2,i);
    if (s1->lietype!=s2->lietype || s1->lierank!=s2->lierank)
      return (object) bool_false; 
  }
  return (object) bool_true;
}

static object grp_mul_grp_grp(g1, g2) object g1,g2;
{ index i, ng1=g1->g.ncomp, ng2=g2->g.ncomp;
  object result = (object) mkgroup(ng1+ng2);
  for (i = 0; i<ng1; i++) Liecomp(result,i) = Liecomp(g1,i);
  for (i = 0; i<ng2; i++) Liecomp(result,ng1+i) = Liecomp(g2,i);
  result->g.toraldim = g1->g.toraldim + g2->g.toraldim;
  return (result);
}

static object grp_select_grp_int(g,n) object g,n;
{ object result;
  index i = n->i.intval;
  if (i<0 || i> g->g.ncomp) error("Index into group out of range.\n");
  if (i>0)
  { result= (object) mkgroup(1); Liecomp(result,0) = Liecomp(g,i-1);
    return result;
  }
  result= (object) mkgroup(0); result->g.toraldim = g->g.toraldim;
  return result;
}

static object vec_sort_vec(v) object v;
{ vector* w=copyvector(&v->v); sortrow(w->compon,w->ncomp);
  return (object) w;
}

static object mat_sort_mat(m) matrix* m;
{ matrix* w=copymatrix(m); Qksortmat(w,cmpfn); return (object) w; }

static object mat_unique_mat(m) matrix* m;
{ return (object) Unique(copymatrix(m),cmpfn); }

static object mat_blockmat_mat_mat(a,b) matrix* a,* b;
{ return (object) Blockmat(a,b); }

static object vid_setdefault_grp(g) object g;
{ if ((cmpfn==height_decr||cmpfn==height_incr) && defaultgrp) unmark_sorted();
  defaultgrp=g; return (object) NULL;
}

static object vid_setdefault(void)
{ if (!defaultgrp) error("No default group defined yet.\n");
  Printf("%5s"," "); printgrp(defaultgrp); Printf("\n"); return (object) NULL;
}

static object grp_setdefault(void)
{
    if (!defaultgrp) error("No default group defined yet.\n");
    return (object) defaultgrp;
}

static object mat_center_grp(g) object g;
{ return (object) Center(g); }

static object int_dim_grp(object g)
{ return (object) mkintcel(Dimgrp(g)); }

static object vid_diagram_grp(g) object g;
{ return Diagram(g); }

static object vec_liecode_grp(g) object g;
{ object result;
  if (g->g.ncomp && !simpgroup(g)) error("No liecode for composite groups.\n");
  result= (object) mkvector(2);
  if (g->g.ncomp == 0)
    { result->v.compon[0]=0; result->v.compon[1]=g->g.toraldim; }
  else
  { simpgrp* s=Liecomp(g,0);
    result->v.compon[0]=(s->lietype - 'A' + 1);
    result->v.compon[1]=s->lierank;
  }
  return result;
}

static object groupmake(char lietype,index rank)
{ object result;
  if (wronggroup(lietype,rank))
      error("Result %c%ld is illegal group.\n", lietype, (long)rank);
  if (lietype=='T')
  { result=(object) mkgroup((index) 0); result->g.toraldim=rank; }
  else
  { result=(object) mkgroup((index) 1);
    Liecomp(result,0)=mksimpgrp(lietype,rank);
  }
  return result;
}

static object grp_liegroup_int_int(typ,rank)  object typ, rank;
{ entry n = typ->i.intval;
  if (n<0 && n>7) error ("There is no group of such a type.\n");
  return groupmake(n ? 'A'-1+n : 'T',rank->i.intval);
}

object int_ncomp_grp(g) group* g; { return (object) mkintcel(g->ncomp); }

static object int_lierank_grp(g) object g;
{ return (object) mkintcel(Lierank(g)); }

static object int_cartan_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_rt(v,s); check_rt(w,s); checkroot(w->compon);
  return (object) mkintcel(Cart_inprod(v->compon,w->compon));
}

static object mat_cartan_grp(object g) { grp=g; return (object) Cartan(); }

static object grp_carttype_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Carttype(m); }

static object mat_centroots_vec_grp(t,g) vector* t; object g;
{ index r=Lierank(grp=g); matrix* m=mkmatrix(1,r+1); check_toral(t,r,0);
  copyrow(t->compon,*m->elm,r+1); return (object) Centroots(m);
}

static object mat_centroots_mat_grp(m,g) matrix* m; object g;
{ check_torals(m,Lierank(grp=g)); return (object) Centroots(m); }

static object grp_centrtype_vec_grp(t,g) vector* t; object g;
{ index r=Lierank(grp=g); matrix* m=mkmatrix(1,r+1); check_toral(t,r,0);
  copyrow(t->compon,*m->elm,r+1); return (object) Centrtype(m);
}

static object grp_centrtype_mat_grp(m,g) matrix* m; object g;
{ check_torals(m,Lierank(grp=g)); return (object) Centrtype(m); }

object mat_closure_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Closure (m,true,0); }

static object int_detcart_grp(object g)
{ grp=g; return (object) mkintcel(Detcartan()); }

static object mat_domweights_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
  return (object) Domweights(v);
}

object mat_fundam_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Closure (m,false,0); }

static object vec_highroot_grp(grp) object grp;
{ if (grp->g.ncomp!=1)
    error("Only groups with one simple component have a highroot.\n");
  return (object) Highroot(Liecomp(grp,0));
}

static object mat_icartan_grp(object g) { grp=g; return (object) Icartan(); }

static object int_inprod_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_rt(v,s); check_rt(w,s);
  return (object) mkintcel(Inprod(v->compon,w->compon));
}

static object int_norm_vec_grp(root,g) vector* root; object g;
{ check_rt(root,Ssrank(grp=g));
  return (object) mkintcel(Inprod(root->compon,root->compon));
}

static object int_numproots_grp(g) object g;
{ return (object) mkintcel(Numproots(g)); }

static object mat_posroots_grp(g) object g; { return ((object) Posroots(g)); }


static object mat_bhdesc_vec_grp(w,g) vector* w; object g;
{ vector* rw=(check_Ww(w,Ssrank(grp=g)),Reduce(w));
  matrix* result=Bh_desc(rw->compon,rw->ncomp);
  freemem(rw); return (object) result;
}

static object mat_bhdesc_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index i,s=Ssrank(grp=g); vector* rw; entry* x=mkintarray(s); matrix* result;
  check_Ww(v,s); check_Ww(w,s);
  for (i=0; i<s; i++) x[i]=1; Waction(x,v); rw=Reduce(w); 
  result = Bh_desc_rel(rw->compon,rw->ncomp,x);
  freearr(x); freemem(rw); return (object) result;
}

static object int_bhleq_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_Ww(v,s); check_Ww(w,s);
  return (object) (Bh_leq(v,w) ? bool_true : bool_false);
}

static object vec_canonical_vec_grp(v,g) vector* v; object g;
{ check_Ww(v,Ssrank(grp=g)); return (object) Canonical(v); }

static object mat_canonical_mat_grp(m,g) matrix* m; object g;
{ check_Wws(m,Ssrank(grp=g)); return (object) Canonicals(m); }

static object vec_dominant_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Dominant(v); }

static object mat_dominant_mat_grp(m,g) matrix* m; object g;
{ index i; matrix* result=(check_wts(m,Lierank(grp=g)),copymatrix(m));
  for (i=0; i<m->nrows; i++) make_dominant(result->elm[i]);
  return (object) result;
}

static object pol_dominant_pol_grp(p,g) poly* p; object g;
{ index i; poly* result=(check_pol(p,Lierank(grp=g)),copypoly(p));
  for (i=0; i<p->nrows; i++) make_dominant(result->elm[i]);
  return (object) Reduce_pol(result);
}

static object vec_exponents_grp(g) object g;
{return ((object) Exponents(g));}

static object mat_filterdom_mat (m,g) matrix* m; object g;
{ check_wts(m,Lierank(grp=g)); return (object) Filter_dom_m(m); }

static object pol_filterdom_pol (p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Filter_dom(p); }

static object pol_klpoly_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ index s=Ssrank(grp=g); poly* result; cmpfn_tp sav_cmp=cmpfn;
  check_Ww(x,s); check_Ww(y,s);
  cmpfn=lex_decr; result=KLpoly(x,y); cmpfn=sav_cmp;
  if (cmpfn!=lex_decr) clrsorted(result); return (object) result;
}

static object int_length_vec_grp(v,g) vector* v; object g;
{ check_Ww(v,Ssrank(grp=g)); return (object) mkintcel(Length(v)); }

object vec_longword_grp(g) object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* result;
  for (i=0; i<s; i++) minus_rho[i]= -1;
  result=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
  return (object) result;
}

static object vec_lreduce_vec_vec_grp(vector* L,vector* ww,object g)
{ vector* result; index l=ww->ncomp; entry* w=mkintarray(l);
  check_Ww(ww,Ssrank(grp=g)); copyrow(ww->compon,w,l);
  result=L_red(L,w,l); freearr(w); return (object) result;
}

static object vec_lrreduce_vec_vec_vec_grp(L,ww,R,g)
  vector* L,* ww,* R; object g;
{ vector* result; index l=ww->ncomp; entry* w=mkintarray(l);
  check_Ww(ww,Ssrank(grp=g)); copyrow(ww->compon,w,l);
  result=LR_red(L,w,l,R); freearr(w); return (object) result;
}

static object mat_orbit_int_vec_mat(i,v,m) intcel* i; vector* v; matrix* m;
{ if (v->ncomp != m->ncols)
    error ("Size of vector should match number of columns of matrix");
  if (!v->ncomp) return (object) mkmatrix(1,0); /* one empty vector */
  if (m->nrows % v->ncomp)
    error ("Size of vector should divide number of rows of matrix");
  if (i->intval<1) error ("limit for orbit must be positive");
  return (object) Orbit(i->intval,v,m->elm,m->nrows/v->ncomp);
}

static object mat_orbit_vec_mat(v,m) vector* v; matrix* m;
{ if (v->ncomp != m->ncols)
    error ("Size of vector should match number of columns of matrix");
  if (!v->ncomp) return (object) mkmatrix(1,0); /* one empty vector */
  if (m->nrows % v->ncomp)
    error ("Size of vector should divide number of rows of matrix");
  return (object) Orbit(1000,v,m->elm,m->nrows/v->ncomp);
}

static object vec_reduce_vec_grp(ww,g) vector* ww; object g;
{ vector* empty=mkvector(0);
  object result=vec_lreduce_vec_vec_grp(empty,ww,g); freemem(empty);
  return result;
}

static object mat_reflection_vec_grp(rt,g) vector* rt; object g;
{ check_rt(rt,Ssrank(grp=g)); checkroot(rt->compon);
  return (object) Reflection(rt->compon);
}

static object vec_rreduce_vec_vec_grp(ww,R,g) vector* ww,* R; object g;
{ vector* result; index i,l=ww->ncomp; entry* w=mkintarray(l);
  check_Ww(ww,Ssrank(grp=g)); for (i=0; i<l; i++) w[i]=ww->compon[l-1-i];
  result=L_red(R,w,l); freearr(w);
  { index n=result->ncomp-1; entry* res=result->compon; /* reverse */
    for (i=0; i<n-i; i++) swap(&res[i],&res[n-i]);
  }
  return (object) result;
}

static object pol_rpoly_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ index s=Ssrank(grp=g); poly* result; check_Ww(x,s); check_Ww(y,s);
  make_q(); result=Rpoly(Canonical(x),Canonical(y)); clear_q();
  return (object) result;
}

static object vec_waction_vec_vec_grp(v,word,g) vector* v,* word; object g;
{ vector* result; check_wt(v,Lierank(grp=g)); check_Ww(word,Ssrank(g));
  result=copyvector(v); Waction(result->compon,word);
  return (object) result;
}

static object mat_waction_vec_grp(word,g) vector* word; object g;
{ check_Ww(word,Ssrank(grp=g)); return (object) Weyl_mat(word); }

static object mat_waction_mat_vec_grp(matrix* m, vector* word, object g)
{ index i; matrix* result;
  check_wts(m,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copymatrix(m);
  for (i=0; i<result->nrows; ++i) Waction(result->elm[i],word);
  return (object) result;
}

static object pol_waction_pol_vec_grp(poly* p, vector* word, object g)
{ index i; poly* result;
  check_pol(p,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copypoly(p);
  for (i=0; i<result->nrows; ++i) Waction(result->elm[i],word);
  return (object) result;
}

static object mat_worbit_vec_grp(vector* v, object g)
{ check_wt(v,Lierank(grp=g)); return (object) Weyl_orbit(v->compon,NULL); }

static object mat_worbitgraph_vec_grp(vector* v, object g)
{ matrix* r,* orbit_graph; check_wt(v,Lierank(grp=g));
  r=Weyl_orbit(v->compon,&orbit_graph); freemem(r);
  return (object) orbit_graph;
}

static object pol_worbit_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Worbit_p(p); }

static object bin_worbitsize_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Orbitsize(v->compon); }

static object bin_worder_grp(g) object g;
{ return (object) Worder(grp=g); }

static object bin_worder_vec_grp(I,g) object I,g;
{ index i,s=Ssrank(grp=g);
  for(i=0; i<I->v.ncomp; i++) if (I->v.compon[i]>s || I->v.compon[i]<=0)
    { Printf("Reflection %ld",(long)I->v.compon[i]);
      error(" is out of range.\n");
    }
  return (object) sub_Worder(&I->v);
}

static object vec_wrtaction_vec_vec_grp(v,word,g) vector* v,* word; object g;
{ index s=Ssrank(grp=g); vector* result; check_rt(v,s); check_Ww(word,s);
  result=copyvector(v); Wrtaction(result->compon,word);
  return (object) result;
}

static object mat_wrtaction_vec_grp(word,g) vector* word; object g;
{ check_Ww(word,Ssrank(grp=g)); return (object) Weyl_rt_mat(word); }

static object mat_wrtaction_mat_vec_grp(matrix* m, vector* word, object g)
{ index i; matrix* result;
  check_wts(m,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copymatrix(m);
  for (i=0; i<result->nrows; ++i) Wrtaction(result->elm[i],word);
  return (object) result;
}

static object mat_wrtorbit_vec_grp(v,g) vector* v; object g;
{ check_rt(v,Ssrank(grp=g)); return (object) Weyl_root_orbit(v->compon); }

static object vec_wword_vec_grp(w,g) vector* w; object g;
{ check_wt(w,Lierank(grp=g)); return (object) Wwordv(w->compon,-1); }

object vec_wword_mat_grp(m,g) matrix* m; object g;
{ if (m->nrows != m->ncols  ||	m->nrows != Lierank(grp=g))
    error("Matrix should be square, of size Lie rank.\n");
  return (object) Wwordm(m);
}

static object bin_classord_vec(lambda) vector* lambda;
{ index l=lambda->ncomp; check_part(lambda->compon,l);
  return (object) Classord(lambda->compon,l);
}

static object vec_frompart_vec(lambda) vector* lambda;
{ if (lambda->ncomp==0) error("Partition should not be empty.\n");
  return (object) From_Part_v(lambda->compon,lambda->ncomp);
}

static object mat_frompart_mat(m) matrix* m;
{ if (m->ncols==0) error("Partitions should not be empty.\n");
  return (object) From_Part_m(m->elm,m->nrows,m->ncols);
}

static object pol_frompart_pol(p) poly* p;
{ if (p->ncols==0) error("Partitions should not be empty.\n");
  return (object) From_Part_p(p);
}

static object vec_nextpart_vec(v) vector* v;
{ index l=v->ncomp; vector* result;
  if (check_part(v->compon,l)==0) return (object) v;
  while (l>0 && v->compon[l-1]==0) l--;
  result=mkvector(l+1);
  copyrow(v->compon,result->compon,l); result->compon[l]=0;
  Nextpart (result->compon,l); while (result->compon[l]==0) l--;
  result->ncomp=l+1; return (object) result;
}

static object vec_nextperm_vec(v) vector* v;
{ index n=v->ncomp; vector* result;
  result=mkvector(n); copyrow(v->compon,result->compon,n);
  Nextperm(result->compon,n); return (object) result;
}

object vec_nexttab_vec(t) vector* t;
{ index l=t->ncomp; vector* result; entry* res;
  result=check_tabl(t); /* perform tests */ freemem(result);
  result=mkvector(l); res=result->compon; copyrow(t->compon,res,l);
  Nexttableau(res,l); return (object) result;
}

object bin_ntabl_vec(lambda) vector* lambda;
{ index l=lambda->ncomp; check_part(lambda->compon,l);
  return (object) n_tableaux(lambda->compon,l);
}

static object mat_partitions_int(p) intcel* p;
{ index n=p->intval;
  if(n<0) error("Partitions should be taken of non-negative numbers only.\n");
  return (object) Partitions(n);
}

static object vid_prtab_vec(v) vector* v;
{ vector* s; entry* square=v->compon;
  index n= v->ncomp, i,r, d=2, m=10;
  while(n>=m) {d++; m*=10;} /* d=number of positions needed per entry */
  s=check_tabl(v); m=s->ncomp; freemem(s);
  for (r=1; r<=m; r++)
  { for (i=0; i<n; i++) if (square[i]==r) Printf("%*ld",(int)d,(long)i+1);
    Printf("\n");
  }
  Printf("\n"); return (object) NULL;
}

static object vec_RS_vec_vec(P,Q) vector* P,* Q;
{ index n=P->ncomp; entry* p,* q; vector* w;
  if (n!=Q->ncomp) error("Tableaux not of same size");
  { index i; vector* sp=check_tabl(P),* sq=check_tabl(Q);
    boolean ok=(sp->ncomp==sq->ncomp);
    if (ok) for(i=0;i<sp->ncomp;i++) if(sp->compon[i]!=sq->compon[i]) ok=0;
    freemem(sp); freemem(sq);
    if(!ok) error("Tableaux not of same shape\n");
  }
  if (isshared(P)) { p=mkintarray(n); copyrow(P->compon,p,n); }
  else p=P->compon;
  if (isshared(Q)) { q=mkintarray(n); copyrow(Q->compon,q,n); }
  else q=Q->compon;
  w=mkvector(n); Robinson_Schensted(p,q,n,w->compon);
  if (p!=P->compon) freearr(p); if (q!=Q->compon) freearr(q);
  return (object) w;
}

static object mat_RS_vec(W) vector* W;
{ index i,n=W->ncomp; entry* w=W->compon; matrix* pq;
  for(i=0; i<n; i++)
    if (w[i]<1 || w[i]>n) error("No permutation: entry out of range.\n");
  pq=mkmatrix(2,n); Schensted_Robinson(w,n,pq->elm[0],pq->elm[1]);
  return (object) pq;
}

static object int_signpart_vec(v) vector* v;
{ entry* lambda=v->compon; index l=v->ncomp;
  check_part(lambda,l); return (object) mkintcel(Sign_part(lambda,l));
}

static object vec_shape_vec(v) vector* v; { return (object) check_tabl(v); }

static object bin_symchar_vec_vec(vector* a,vector* b)
{ entry* lambda=a->compon,* mu=b->compon;
  index l=a->ncomp,m=b->ncomp,n=check_part(lambda,l);
  if (n!=check_part(mu,m))
    error ("Partitions should be of the same number.\n");
  return (object) MN_char_val(lambda,mu,l,m);
}

static object poly_symchar_vec(a) vector* a;
{ return (object) MN_char(a->compon,a->ncomp); }

static object mat_symorbit_vec(v) vector* v;
{ return (object) Permutations(v->compon,v->ncomp); }

static object mat_tableaux_vec(lambda) vector* lambda;
{ return (object) Tableaux(lambda->compon,lambda->ncomp);}

static object vec_topart_vec(v) vector* v;
{ return (object) To_Part_v(v->compon,v->ncomp); }

static object mat_topart_mat(m) matrix* m;
{ return (object) To_Part_m(m->elm,m->nrows,m->ncols); }

static object pol_topart_pol(p) poly* p; { return (object) To_Part_p(p); }

static object vec_transpart_vec(v) vector* v;
{ entry* lambda=v->compon; index l=v->ncomp;
  check_part(lambda,l); return (object) Trans_part(lambda,l);
}


static object pol_adams_int_vec_grp(d,v,g) intcel* d; vector* v; object g;
{ index r=Lierank(grp=g),n=d->intval;
  if (n<=0) error("Scalar factor in Adams should be positive.\n");
  check_wt(v,r); return (object) Adams(n,Pol_from_vec(v));
}

static object pol_adams_int_pol_grp(d,p,g) intcel* d; poly* p; object g;
{ index r=Lierank(grp=g),n=d->intval;
  if (n<=0) error("Scalar factor in Adams should be positive.\n");
  check_pol(p,r); return (object) Adams(n,p);
}

static object pol_adjoint_grp(g) object g;
{ grp=g; return (object) Adjoint(grp); }

static object pol_altdom_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Alt_dom(p); }

static object pol_altdom_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Alt_dom(Pol_from_vec(v)); }

static object pol_altdom_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ check_Ww(w,Ssrank(grp=g)); check_pol(p,Lierank(g));
  return (object) Alt_dom_w(p,w);
}

static object pol_altdom_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ check_Ww(w,Ssrank(grp=g)); check_wt(v,Lierank(g));
  return (object) Alt_dom_w(Pol_from_vec(v),w);
}

static object pol_alttensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  p=check_pol(p,r); return (object) SAtensor(true,n,p);
}

static object pol_alttensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  check_wt(v,r); return (object) SAtensor(true,n,Pol_from_vec(v));
}

static object pol_altwsum_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) alt_Wsum(p); }

static object pol_altwsum_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) alt_Wsum(Pol_from_vec(v)); }

static object pol_branch_vec_grp_mat_grp(v,h,m,g) vector *v; object h,m,g;
{ index R=Lierank(g),r=Lierank(grp=h); entry* lambda=v->compon;
  check_wt(v,R);
  if (m->m.nrows!=R)
    error ("Number of rows of restriction matrix should match Lie rank.\n");
  if (m->m.ncols!=r) error (
    "Number of columns of restriction matrix should match rank subgroup.\n");
  testdom(lambda,g); return (object) Branch_irr(lambda,m->m.elm,g);
}

static object pol_branch_pol_grp_mat_grp(p,h,m,g) poly *p; object h,m,g;
{ index R=Lierank(g),r=Lierank(grp=h);
  p=check_pol(p,R);
  if (m->m.nrows!=R)
    error ("Number of rows of restriction matrix should match Lie rank.\n");
  if (m->m.ncols!=r)
    error ("Number of columns of restriction matrix\
 should match rank subgroup.\n");
  { index i; for (i=0; i<p->nrows; i++) testdom(p->elm[i],g);}
  return (object) Branch(p,m->m.elm,g);
}

object pol_collect_pol_grp_mat_grp(p,h,m,g) poly* p; matrix* m; object h,g;
{ index i,r=Lierank(grp=h),R=Lierank(g); check_pol(p,r);
  for(i=0;i<p->nrows;i++) testdom(p->elm[i],h);
  if (m->nrows!=r) error ("Number of rows of inverse restriction matrix\
 should match rank subgroup.\n");
  if (m->ncols!=R) error ("Number of columns of inverse restriction matrix\
 should match Lie rank.\n");
  return (object) Collect(p,m,1,g);
}

object pol_collect_pol_grp_mat_int_grp(p,h,m,n,g)
  poly* p; matrix* m; intcel* n; object h,g;
{ index i,r=Lierank(grp=h),R=Lierank(g); entry d=n->intval; check_pol(p,r);
  for(i=0;i<p->nrows;i++) testdom(p->elm[i],h);
  if (m->nrows!=r) error ("Number of rows of inverse restriction matrix\
 should match rank subgroup.\n");
  if (m->ncols!=R) error ("Number of columns of inverse restriction matrix\
 should match Lie rank.\n");
  if (d<=0) error("Denominator in collect should be positive.\n");
  return (object) Collect(p,m,d,g);
}

static object vec_contragr_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Contragr(v,grp); }

static object pol_contragr_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Contragr_p(p,grp); }

static object pol_decomp_pol_grp(p,g) poly* p; object g;
{ index i,r=Lierank(grp=g);
  check_pol(p,r); for(i=0; i<p->nrows; i++) testdom(p->elm[i],g);
  return (object) Decomp(p);
}

static object pol_Demazure_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ check_pol(p,Lierank(grp=g)); check_Ww(w,Ssrank(g));
  return (object) Demazure(p,w);
}

static object pol_Demazure_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ check_wt(v,Lierank(grp=g)); check_Ww(w,Ssrank(g));
  return (object) Demazure(Pol_from_vec(v),w);
}

static object pol_Demazure_pol_grp(p,g) poly* p; object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* w;
  poly*result; check_pol(p,Lierank(grp=g));
  for (i=0; i<s; i++) minus_rho[i]= -1;
  w=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
  result=Demazure(p,w); freemem(w); return (object) result;
}

static object pol_Demazure_vec_grp(v,g) vector* v; object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* w;
  poly*result; check_wt(v,Lierank(grp=g));
  for (i=0; i<s; i++) minus_rho[i]= -1;
  w=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
  result=Demazure(Pol_from_vec(v),w); freemem(w); return (object) result;
}

static object bin_dim_vec_grp(v,g) vector* v; object g;
{ index r=Lierank(grp=g); vector* t=(check_wt(v,r),Dominant(v));
  bigint* result=DimIrr(t->compon); freemem(t); return (object) result;
}

static object bin_dim_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Dim(p); }

static object pol_domchar_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
  return (object) Domchar_irr(v->compon,NULL);
}

static object pol_domchar_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g));
  return (object) Domchar_p(p); /* Domchar_p does testdom itself */ 
}

static object bin_domchar_vec_vec_grp(lambda,w,g) vector* lambda,* w; object g;
{ index r=Lierank(grp=g); entry* mu=mkintarray(r); copyrow(w->compon,mu,r);
  check_wt(lambda,r); check_wt(w,r); testdom(lambda->compon,g);
  make_dominant(mu);
  { poly* t=Domchar_irr(lambda->compon,mu); bigint* result=t->coef[0];
    freearr(mu); freemem(t); return (object) result;
  }
}

static object bin_domchar_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ index i,r=Lierank(grp=g); entry* mu=mkintarray(r); bigint* result=null;
  check_pol(p,r); check_wt(w,r); copyrow(w->compon,mu,r); make_dominant(mu);
  for (i=0; i<p->nrows; i++)
  { poly* t=(testdom(p->elm[i],g),Domchar_irr(p->elm[i],mu));
    result=add(result,mult(p->coef[i],t->coef[0])); freemem(t);
  }
  freearr(mu); return (object) result;
}

static object pol_lrtensor_vec_vec(lambda,mu) vector* lambda,* mu;
{ index l=lambda->ncomp;
  if (l!=mu->ncomp) error
    ("partitions for LR_tensor should have same number of parts.\n");
  check_part(lambda->compon,l); check_part(mu->compon,l);
  return (object) LR_tensor_irr(lambda->compon,mu->compon,l);
}

static object pol_lrtensor_pol_pol(p,q) poly* p,* q;
{ index i,l=p->ncols;
  if (l!=q->ncols) error
    ("exponents for LR_tensor should have same number of parts.\n");
  for (i=0; i<p->nrows; i++) check_part(p->elm[i],l);
  for (i=0; i<q->nrows; i++) check_part(q->elm[i],l);
  return (object) LR_tensor(p,q);
}

static object pol_plethysm_vec_pol_grp(vector* lambda, poly* p, object g)
{ index n=check_part(lambda->compon,lambda->ncomp);
  check_pol(p,Lierank(grp=g));
  return (object) Plethysm(lambda->compon,lambda->ncomp,n,p);
}


static object pol_plethysm_vec_vec_grp(vector* lambda,vector* mu,object g)
{ index n=check_part(lambda->compon,lambda->ncomp);
  check_wt(mu,Lierank(grp=g));
  return (object) Plethysm(lambda->compon,lambda->ncomp,n,Pol_from_vec(mu));
}

static object pol_ptensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  p=check_pol(p,r); return (object) Ptensor(n,p);
}

static object pol_ptensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  check_wt(v,r); return (object) Ptensor(n,Pol_from_vec(v));
}

object mat_resmat_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Resmat(m); }

static object pol_spectrum_vec_vec_grp (wt,t,g) vector* wt,* t; object g;
{ index r=Lierank(grp=g); check_wt(wt,r); check_toral(t,r,1);
  return (object) Spectrum(Pol_from_vec(wt),t);
}

static object pol_spectrum_pol_vec_grp (p,t,g) poly* p; vector* t; object g;
{ index r=Lierank(grp=g); check_pol(p,r); check_toral(t,r,1);
  return (object) Spectrum(p,t);
}

static object pol_symtensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  p=check_pol(p,r); return (object) SAtensor(false,n,p);
}

static object pol_symtensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
  if (n<0) error("Cannot take negative tensor power.\n");
  check_wt(v,r); return (object) SAtensor(false,n,Pol_from_vec(v));
}

static object pol_tensor_pol_pol_grp(p,q,g) poly* p,* q; object g;
{ entry r=Lierank(grp=g); p=check_pol(p,r); q=check_pol(q,r);
  return (object) Tensor(p,q);
}

static object pol_tensor_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ entry r=Lierank(grp=g); check_wt(x,r); check_wt(y,r);
  return (object) Tensor(Pol_from_vec(x),Pol_from_vec(y));
}

static object bin_tensor_pol_pol_vec_grp(p,q,nu,g)
  poly* p,* q; vector* nu; object g;
{ entry r=Lierank(grp=g); p=check_pol(p,r); q=check_pol(q,r);
  check_wt(nu,r); return (object) Tensor_coef(p,q,nu);
}

static object bin_tensor_vec_vec_vec_grp(x,y,z,g) vector* x,* y,* z; object g;
{ entry r=Lierank(grp=g); check_wt(x,r); check_wt(y,r); check_wt(z,r);
  return (object) Tensor_coef(Pol_from_vec(x),Pol_from_vec(y),z);
}

static object pol_vdecomp_pol_grp(p,g) poly* p; object g;
{ index i,r=Lierank(grp=g);
  check_pol(p,r); for(i=0; i<p->nrows; i++) testdom(p->elm[i],g);
  return (object) Vdecomp(p);
}

static object pol_vdecomp_vec_grp(v,g) vector* v; object g;
{ poly* p=Pol_from_vec(v),* result;
  check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
  result=Vdecomp(p); freepol(p); return (object) result;
}

/* The interfaces of the above defined operations. */

Symbrec static3[] = {
  C2("==", int_eq_grp_grp, INTEGER, GROUP, GROUP)
  C2("*", grp_mul_grp_grp, GROUP, GROUP, GROUP)
  C2("_select", grp_select_grp_int, GROUP, GROUP, INTEGER)
  C1("sort",vec_sort_vec,VECTOR,VECTOR)
  C1("sort",mat_sort_mat,MATRIX,MATRIX)
  C1("unique",mat_unique_mat,MATRIX,MATRIX)
  C2("block_mat", mat_blockmat_mat_mat,MATRIX, MATRIX, MATRIX)
  C1("_setdefault", vid_setdefault_grp, VOID, GRPDFT)
  C0("_setdefault", vid_setdefault, VOID)
  C0("_gsetdefault", grp_setdefault, GROUP)

  C1("center",mat_center_grp,MATRIX,GRPDFT)
  C1("diagram", vid_diagram_grp, VOID, GRPDFT)
  C1("dim", int_dim_grp, INTEGER, GRPDFT)
  C1("Lie_code", vec_liecode_grp, VECTOR, GRPDFT)
  C2("Lie_group", grp_liegroup_int_int, GROUP, INTEGER, INTEGER)
  C1("Lie_rank", int_lierank_grp, INTEGER, GRPDFT)
  C1("n_comp",int_ncomp_grp, INTEGER, GRPDFT)

  C3("Cartan", int_cartan_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
  C1("Cartan", mat_cartan_grp, MATRIX, GRPDFT)
  C2("Cartan_type", grp_carttype_mat_grp, GROUP, MATRIX, GRPDFT)
  C2("cent_roots", mat_centroots_vec_grp, MATRIX, VECTOR, GRPDFT)
  C2("cent_roots", mat_centroots_mat_grp, MATRIX, MATRIX, GRPDFT)
  C2("centr_type", grp_centrtype_vec_grp, GROUP, VECTOR, GRPDFT)
  C2("centr_type", grp_centrtype_mat_grp, GROUP, MATRIX, GRPDFT)
  C2("closure", mat_closure_mat_grp, MATRIX, MATRIX, GRPDFT)
  C1("det_Cartan", int_detcart_grp, INTEGER, GRPDFT)
  C2("dom_weights", mat_domweights_vec_grp, MATRIX, VECTOR, GRPDFT)
  C2("fundam", mat_fundam_mat_grp, MATRIX, MATRIX, GRPDFT)
  C1("high_root", vec_highroot_grp, VECTOR, GRPDFT)
  C1("i_Cartan", mat_icartan_grp, MATRIX, GRPDFT)
  C3("inprod", int_inprod_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
  C2("norm", int_norm_vec_grp, INTEGER, VECTOR, GRPDFT)
  C1("n_pos_roots", int_numproots_grp, INTEGER, GRPDFT)
  C1("pos_roots", mat_posroots_grp, MATRIX, GRPDFT)

  C2("Bruhat_desc", mat_bhdesc_vec_grp, MATRIX, VECTOR, GRPDFT)
  C3("Bruhat_desc", mat_bhdesc_vec_vec_grp, MATRIX, VECTOR, VECTOR, GRPDFT)
  C3("Bruhat_leq", int_bhleq_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
  C2("canonical", vec_canonical_vec_grp, VECTOR, VECTOR, GRPDFT)
  C2("canonical", mat_canonical_mat_grp, MATRIX, MATRIX, GRPDFT)
  C2("dominant", vec_dominant_vec_grp, VECTOR, VECTOR, GRPDFT)
  C2("dominant", mat_dominant_mat_grp, MATRIX, MATRIX, GRPDFT)
  C2("dominant", pol_dominant_pol_grp, POLY, POLY, GRPDFT)
  C1("exponents", vec_exponents_grp, VECTOR, GRPDFT)
  C2("filter_dom", mat_filterdom_mat, MATRIX, MATRIX, GRPDFT)
  C2("filter_dom", pol_filterdom_pol, POLY, POLY, GRPDFT)
  C3("KL_poly", pol_klpoly_vec_vec_grp, POLY,  VECTOR, VECTOR, GRPDFT)
  C2("length", int_length_vec_grp, INTEGER, VECTOR, GRPDFT)
  C1("long_word",vec_longword_grp,VECTOR,GRPDFT)
  C3("l_reduce", vec_lreduce_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
  C4("lr_reduce",
      vec_lrreduce_vec_vec_vec_grp,VECTOR,VECTOR,VECTOR,VECTOR,GRPDFT)
  C3("orbit", mat_orbit_int_vec_mat, MATRIX, INTEGER,VECTOR,MATRIX)
  C2("orbit", mat_orbit_vec_mat, MATRIX, VECTOR,MATRIX)
  C2("reduce", vec_reduce_vec_grp, VECTOR, VECTOR, GRPDFT)
  C2("reflection", mat_reflection_vec_grp, MATRIX, VECTOR, GRPDFT)
  C3("r_reduce", vec_rreduce_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
  C3("R_poly", pol_rpoly_vec_vec_grp, POLY,  VECTOR, VECTOR, GRPDFT)
  C3("W_action", vec_waction_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
  C2("W_action", mat_waction_vec_grp, MATRIX, VECTOR, GRPDFT)
  C3("W_action", mat_waction_mat_vec_grp, MATRIX, MATRIX, VECTOR, GRPDFT)
  C3("W_action", pol_waction_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
  C2("W_orbit", mat_worbit_vec_grp, MATRIX, VECTOR, GRPDFT)
  C2("W_orbit_graph", mat_worbitgraph_vec_grp, MATRIX, VECTOR, GRPDFT)
  C2("W_orbit", pol_worbit_pol_grp, POLY, POLY, GRPDFT)
  C2("W_orbit_size", bin_worbitsize_vec_grp, BIGINT, VECTOR, GRPDFT)
  C1("W_order", bin_worder_grp, BIGINT, GRPDFT)
  C2("W_order", bin_worder_vec_grp, BIGINT, VECTOR, GRPDFT)
  C3("W_rt_action", vec_wrtaction_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
  C2("W_rt_action", mat_wrtaction_vec_grp, MATRIX, VECTOR, GRPDFT)
  C3("W_rt_action", mat_wrtaction_mat_vec_grp, MATRIX, MATRIX, VECTOR, GRPDFT)
  C2("W_rt_orbit", mat_wrtorbit_vec_grp, MATRIX, VECTOR, GRPDFT)
  C2("W_word", vec_wword_vec_grp, VECTOR, VECTOR, GRPDFT)
  C2("W_word", vec_wword_mat_grp, VECTOR, MATRIX, GRPDFT)

  C1("class_ord",bin_classord_vec,BIGINT,VECTOR)
  C1("from_part",vec_frompart_vec,VECTOR,VECTOR)
  C1("from_part",mat_frompart_mat,MATRIX,MATRIX)
  C1("from_part",pol_frompart_pol,POLY,POLY)
  C1("next_part",vec_nextpart_vec,VECTOR,VECTOR)
  C1("next_perm",vec_nextperm_vec,VECTOR,VECTOR)
  C1("next_tabl",vec_nexttab_vec,VECTOR,VECTOR)
  C1("n_tabl",bin_ntabl_vec,BIGINT,VECTOR)
  C1("partitions",mat_partitions_int,MATRIX,INTEGER)
  C1("print_tab",vid_prtab_vec,VOID,VECTOR)
  C1("RS",mat_RS_vec,MATRIX,VECTOR)
  C2("RS",vec_RS_vec_vec,VECTOR,VECTOR,VECTOR)
  C1("sign_part",int_signpart_vec,INTEGER,VECTOR)
  C1("shape",vec_shape_vec,VECTOR,VECTOR)
  C2("sym_char",bin_symchar_vec_vec,BIGINT,VECTOR,VECTOR)
  C1("sym_char",poly_symchar_vec,POLY,VECTOR)
  C1("sym_orbit",mat_symorbit_vec,MATRIX,VECTOR)
  C1("tableaux",mat_tableaux_vec,MATRIX,VECTOR)
  C1("to_part",vec_topart_vec,VECTOR,VECTOR)
  C1("to_part",mat_topart_mat,MATRIX,MATRIX)
  C1("to_part",pol_topart_pol,POLY,POLY)
  C1("trans_part",vec_transpart_vec,VECTOR,VECTOR)

  C3("Adams", pol_adams_int_vec_grp, POLY,INTEGER, VECTOR, GRPDFT)
  C3("Adams", pol_adams_int_pol_grp, POLY,INTEGER, POLY, GRPDFT)
  C1("adjoint", pol_adjoint_grp, POLY, GRPDFT)
  C2("alt_dom", pol_altdom_pol_grp, POLY, POLY, GRPDFT)
  C2("alt_dom", pol_altdom_vec_grp, POLY, VECTOR, GRPDFT)
  C3("alt_dom", pol_altdom_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
  C3("alt_dom", pol_altdom_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
  C3("alt_tensor", pol_alttensor_int_vec_grp, POLY, INTEGER, VECTOR, GRPDFT)
  C3("alt_tensor", pol_alttensor_int_pol_grp, POLY, INTEGER, POLY, GRPDFT)
  C2("alt_W_sum", pol_altwsum_pol_grp, POLY, POLY, GRPDFT)
  C2("alt_W_sum", pol_altwsum_vec_grp, POLY, VECTOR, GRPDFT)
  C4("branch",pol_branch_vec_grp_mat_grp,POLY,VECTOR,GROUP,MATRIX,GRPDFT) 
  C4("branch",pol_branch_pol_grp_mat_grp,POLY,POLY,GROUP,MATRIX,GRPDFT)
  C4("collect", pol_collect_pol_grp_mat_grp,POLY,POLY,GROUP,MATRIX,GRPDFT)
  C5("collect", pol_collect_pol_grp_mat_int_grp,POLY,POLY,GROUP,MATRIX,INTEGER,GRPDFT)
  C2("contragr", vec_contragr_vec_grp, VECTOR, VECTOR, GRPDFT)
  C2("contragr", pol_contragr_pol_grp, POLY, POLY, GRPDFT)
  C2("decomp", pol_decomp_pol_grp, POLY, POLY, GRPDFT)
  C3("Demazure", pol_Demazure_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
  C3("Demazure", pol_Demazure_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
  C2("Demazure", pol_Demazure_pol_grp, POLY, POLY, GRPDFT)
  C2("Demazure", pol_Demazure_vec_grp, POLY, VECTOR, GRPDFT)
  C2("dim", bin_dim_vec_grp, BIGINT, VECTOR, GRPDFT)
  C2("dim", bin_dim_pol_grp, BIGINT, POLY, GRPDFT)
  C3("dom_char", bin_domchar_vec_vec_grp, BIGINT, VECTOR, VECTOR, GRPDFT)
  C3("dom_char", bin_domchar_pol_vec_grp, BIGINT, POLY, VECTOR, GRPDFT)
  C2("dom_char", pol_domchar_vec_grp, POLY, VECTOR, GRPDFT)
  C2("dom_char", pol_domchar_pol_grp, POLY, POLY, GRPDFT)
  C2("LR_tensor",pol_lrtensor_vec_vec,POLY,VECTOR,VECTOR)
  C2("LR_tensor",pol_lrtensor_pol_pol,POLY,POLY,POLY)
  C3("plethysm", pol_plethysm_vec_vec_grp, POLY,VECTOR, VECTOR, GRPDFT)
  C3("plethysm", pol_plethysm_vec_pol_grp, POLY,VECTOR, POLY, GRPDFT)
  C3("p_tensor", pol_ptensor_int_vec_grp, POLY,INTEGER, VECTOR, GRPDFT)
  C3("p_tensor", pol_ptensor_int_pol_grp, POLY,INTEGER, POLY, GRPDFT)
  C2("res_mat", mat_resmat_mat_grp, MATRIX, MATRIX, GRPDFT)
  C3("spectrum", pol_spectrum_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
  C3("spectrum", pol_spectrum_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
  C3("sym_tensor", pol_symtensor_int_vec_grp, POLY, INTEGER, VECTOR, GRPDFT)
  C3("sym_tensor", pol_symtensor_int_pol_grp, POLY, INTEGER, POLY, GRPDFT)
  C3("tensor", pol_tensor_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
  C3("tensor", pol_tensor_pol_pol_grp, POLY, POLY, POLY, GRPDFT)
  C4("tensor", bin_tensor_vec_vec_vec_grp, BIGINT, VECTOR, VECTOR, VECTOR, GRPDFT)
  C4("tensor", bin_tensor_pol_pol_vec_grp, BIGINT, POLY, POLY, VECTOR, GRPDFT)
  C2("v_decomp", pol_vdecomp_pol_grp, POLY, POLY, GRPDFT)
  C2("v_decomp", pol_vdecomp_vec_grp, POLY, VECTOR, GRPDFT)
};
int nstatic3 = array_size(static3);