1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
|
/* Group operations */
#include "lie.h"
static void check_wt(vector* lambda, index r)
{ if (lambda->ncomp!=r) error("Size of weight should equal Lie rank.\n"); }
static void check_wts(matrix* m, index r)
{ if (m->ncols!=r) error("Size of weights should equal Lie rank.\n"); }
static void check_rt(vector* rt, index s)
{ if (rt->ncomp!=s) error("Size of root should equal semisimple rank.\n"); }
static void check_rts(matrix* m, index s)
{ if (m->ncols!=s) error("Size of roots should equal semisimple rank.\n"); }
static void check_toral(vector* t, index r, index lim)
{ if (t->ncomp!=r+1)
error("Size of toral element should equal Lie rank + 1.\n");
if (t->compon[r]<lim)
{ error("Final entry of toral element should %stive.\n"
, lim ? "be posi" : "not be nega");
}
}
static void check_torals(matrix* m, index r)
{ index i;
if (m->ncols!=r+1)
error("Size of toral elements should equal Lie rank + 1.\n");
for (i=0; i<m->nrows; i++) if (m->elm[i][r]<0)
error("Final entry of toral elements should not be negative.\n");
}
void testdom(entry* v, object grp)
{ index j, s=Ssrank(grp);
for(j=0; j<s; j++) if (*v++<0) error ("Weight is not dominant\n");
}
static void check_Ww(vector* ww, index s)
{ index i,l=ww->ncomp; entry* w=ww->compon;
for (i=0; i<l; i++)
if (w[i]<0) error("Weyl word entries should not be negative.\n");
else if (w[i]>s)
error("Weyl word entries should not exceed semisimple rank.\n");
}
static void check_Wws(matrix* m, index s)
{ index i,j,l=m->ncols;
for (i=0; i<m->nrows; i++)
{ entry* w=m->elm[i];
for (j=0; j<l; j++)
if (w[j]<0) error("Weyl word entries should not be negative.\n");
else if (w[j]>s)
error("Weyl word entries should not exceed semisimple rank.\n");
}
}
object int_eq_grp_grp(g1,g2) object g1,g2; /* used externally (decomp) */
{ index i;
if (g1->g.ncomp!=g2->g.ncomp || g1->g.toraldim!=g2->g.toraldim)
return (object) bool_false;
for (i=0; i<g1->g.ncomp; i++)
{ simpgrp* s1=Liecomp(g1,i); simpgrp* s2=Liecomp(g2,i);
if (s1->lietype!=s2->lietype || s1->lierank!=s2->lierank)
return (object) bool_false;
}
return (object) bool_true;
}
static object grp_mul_grp_grp(g1, g2) object g1,g2;
{ index i, ng1=g1->g.ncomp, ng2=g2->g.ncomp;
object result = (object) mkgroup(ng1+ng2);
for (i = 0; i<ng1; i++) Liecomp(result,i) = Liecomp(g1,i);
for (i = 0; i<ng2; i++) Liecomp(result,ng1+i) = Liecomp(g2,i);
result->g.toraldim = g1->g.toraldim + g2->g.toraldim;
return (result);
}
static object grp_select_grp_int(g,n) object g,n;
{ object result;
index i = n->i.intval;
if (i<0 || i> g->g.ncomp) error("Index into group out of range.\n");
if (i>0)
{ result= (object) mkgroup(1); Liecomp(result,0) = Liecomp(g,i-1);
return result;
}
result= (object) mkgroup(0); result->g.toraldim = g->g.toraldim;
return result;
}
static object vec_sort_vec(v) object v;
{ vector* w=copyvector(&v->v); sortrow(w->compon,w->ncomp);
return (object) w;
}
static object mat_sort_mat(m) matrix* m;
{ matrix* w=copymatrix(m); Qksortmat(w,cmpfn); return (object) w; }
static object mat_unique_mat(m) matrix* m;
{ return (object) Unique(copymatrix(m),cmpfn); }
static object mat_blockmat_mat_mat(a,b) matrix* a,* b;
{ return (object) Blockmat(a,b); }
static object vid_setdefault_grp(g) object g;
{ if ((cmpfn==height_decr||cmpfn==height_incr) && defaultgrp) unmark_sorted();
defaultgrp=g; return (object) NULL;
}
static object vid_setdefault(void)
{ if (!defaultgrp) error("No default group defined yet.\n");
Printf("%5s"," "); printgrp(defaultgrp); Printf("\n"); return (object) NULL;
}
static object grp_setdefault(void)
{
if (!defaultgrp) error("No default group defined yet.\n");
return (object) defaultgrp;
}
static object mat_center_grp(g) object g;
{ return (object) Center(g); }
static object int_dim_grp(object g)
{ return (object) mkintcel(Dimgrp(g)); }
static object vid_diagram_grp(g) object g;
{ return Diagram(g); }
static object vec_liecode_grp(g) object g;
{ object result;
if (g->g.ncomp && !simpgroup(g)) error("No liecode for composite groups.\n");
result= (object) mkvector(2);
if (g->g.ncomp == 0)
{ result->v.compon[0]=0; result->v.compon[1]=g->g.toraldim; }
else
{ simpgrp* s=Liecomp(g,0);
result->v.compon[0]=(s->lietype - 'A' + 1);
result->v.compon[1]=s->lierank;
}
return result;
}
static object groupmake(char lietype,index rank)
{ object result;
if (wronggroup(lietype,rank))
error("Result %c%ld is illegal group.\n", lietype, (long)rank);
if (lietype=='T')
{ result=(object) mkgroup((index) 0); result->g.toraldim=rank; }
else
{ result=(object) mkgroup((index) 1);
Liecomp(result,0)=mksimpgrp(lietype,rank);
}
return result;
}
static object grp_liegroup_int_int(typ,rank) object typ, rank;
{ entry n = typ->i.intval;
if (n<0 && n>7) error ("There is no group of such a type.\n");
return groupmake(n ? 'A'-1+n : 'T',rank->i.intval);
}
object int_ncomp_grp(g) group* g; { return (object) mkintcel(g->ncomp); }
static object int_lierank_grp(g) object g;
{ return (object) mkintcel(Lierank(g)); }
static object int_cartan_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_rt(v,s); check_rt(w,s); checkroot(w->compon);
return (object) mkintcel(Cart_inprod(v->compon,w->compon));
}
static object mat_cartan_grp(object g) { grp=g; return (object) Cartan(); }
static object grp_carttype_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Carttype(m); }
static object mat_centroots_vec_grp(t,g) vector* t; object g;
{ index r=Lierank(grp=g); matrix* m=mkmatrix(1,r+1); check_toral(t,r,0);
copyrow(t->compon,*m->elm,r+1); return (object) Centroots(m);
}
static object mat_centroots_mat_grp(m,g) matrix* m; object g;
{ check_torals(m,Lierank(grp=g)); return (object) Centroots(m); }
static object grp_centrtype_vec_grp(t,g) vector* t; object g;
{ index r=Lierank(grp=g); matrix* m=mkmatrix(1,r+1); check_toral(t,r,0);
copyrow(t->compon,*m->elm,r+1); return (object) Centrtype(m);
}
static object grp_centrtype_mat_grp(m,g) matrix* m; object g;
{ check_torals(m,Lierank(grp=g)); return (object) Centrtype(m); }
object mat_closure_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Closure (m,true,0); }
static object int_detcart_grp(object g)
{ grp=g; return (object) mkintcel(Detcartan()); }
static object mat_domweights_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
return (object) Domweights(v);
}
object mat_fundam_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Closure (m,false,0); }
static object vec_highroot_grp(grp) object grp;
{ if (grp->g.ncomp!=1)
error("Only groups with one simple component have a highroot.\n");
return (object) Highroot(Liecomp(grp,0));
}
static object mat_icartan_grp(object g) { grp=g; return (object) Icartan(); }
static object int_inprod_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_rt(v,s); check_rt(w,s);
return (object) mkintcel(Inprod(v->compon,w->compon));
}
static object int_norm_vec_grp(root,g) vector* root; object g;
{ check_rt(root,Ssrank(grp=g));
return (object) mkintcel(Inprod(root->compon,root->compon));
}
static object int_numproots_grp(g) object g;
{ return (object) mkintcel(Numproots(g)); }
static object mat_posroots_grp(g) object g; { return ((object) Posroots(g)); }
static object mat_bhdesc_vec_grp(w,g) vector* w; object g;
{ vector* rw=(check_Ww(w,Ssrank(grp=g)),Reduce(w));
matrix* result=Bh_desc(rw->compon,rw->ncomp);
freemem(rw); return (object) result;
}
static object mat_bhdesc_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index i,s=Ssrank(grp=g); vector* rw; entry* x=mkintarray(s); matrix* result;
check_Ww(v,s); check_Ww(w,s);
for (i=0; i<s; i++) x[i]=1; Waction(x,v); rw=Reduce(w);
result = Bh_desc_rel(rw->compon,rw->ncomp,x);
freearr(x); freemem(rw); return (object) result;
}
static object int_bhleq_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ index s=Ssrank(grp=g); check_Ww(v,s); check_Ww(w,s);
return (object) (Bh_leq(v,w) ? bool_true : bool_false);
}
static object vec_canonical_vec_grp(v,g) vector* v; object g;
{ check_Ww(v,Ssrank(grp=g)); return (object) Canonical(v); }
static object mat_canonical_mat_grp(m,g) matrix* m; object g;
{ check_Wws(m,Ssrank(grp=g)); return (object) Canonicals(m); }
static object vec_dominant_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Dominant(v); }
static object mat_dominant_mat_grp(m,g) matrix* m; object g;
{ index i; matrix* result=(check_wts(m,Lierank(grp=g)),copymatrix(m));
for (i=0; i<m->nrows; i++) make_dominant(result->elm[i]);
return (object) result;
}
static object pol_dominant_pol_grp(p,g) poly* p; object g;
{ index i; poly* result=(check_pol(p,Lierank(grp=g)),copypoly(p));
for (i=0; i<p->nrows; i++) make_dominant(result->elm[i]);
return (object) Reduce_pol(result);
}
static object vec_exponents_grp(g) object g;
{return ((object) Exponents(g));}
static object mat_filterdom_mat (m,g) matrix* m; object g;
{ check_wts(m,Lierank(grp=g)); return (object) Filter_dom_m(m); }
static object pol_filterdom_pol (p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Filter_dom(p); }
static object pol_klpoly_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ index s=Ssrank(grp=g); poly* result; cmpfn_tp sav_cmp=cmpfn;
check_Ww(x,s); check_Ww(y,s);
cmpfn=lex_decr; result=KLpoly(x,y); cmpfn=sav_cmp;
if (cmpfn!=lex_decr) clrsorted(result); return (object) result;
}
static object int_length_vec_grp(v,g) vector* v; object g;
{ check_Ww(v,Ssrank(grp=g)); return (object) mkintcel(Length(v)); }
object vec_longword_grp(g) object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* result;
for (i=0; i<s; i++) minus_rho[i]= -1;
result=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
return (object) result;
}
static object vec_lreduce_vec_vec_grp(vector* L,vector* ww,object g)
{ vector* result; index l=ww->ncomp; entry* w=mkintarray(l);
check_Ww(ww,Ssrank(grp=g)); copyrow(ww->compon,w,l);
result=L_red(L,w,l); freearr(w); return (object) result;
}
static object vec_lrreduce_vec_vec_vec_grp(L,ww,R,g)
vector* L,* ww,* R; object g;
{ vector* result; index l=ww->ncomp; entry* w=mkintarray(l);
check_Ww(ww,Ssrank(grp=g)); copyrow(ww->compon,w,l);
result=LR_red(L,w,l,R); freearr(w); return (object) result;
}
static object mat_orbit_int_vec_mat(i,v,m) intcel* i; vector* v; matrix* m;
{ if (v->ncomp != m->ncols)
error ("Size of vector should match number of columns of matrix");
if (!v->ncomp) return (object) mkmatrix(1,0); /* one empty vector */
if (m->nrows % v->ncomp)
error ("Size of vector should divide number of rows of matrix");
if (i->intval<1) error ("limit for orbit must be positive");
return (object) Orbit(i->intval,v,m->elm,m->nrows/v->ncomp);
}
static object mat_orbit_vec_mat(v,m) vector* v; matrix* m;
{ if (v->ncomp != m->ncols)
error ("Size of vector should match number of columns of matrix");
if (!v->ncomp) return (object) mkmatrix(1,0); /* one empty vector */
if (m->nrows % v->ncomp)
error ("Size of vector should divide number of rows of matrix");
return (object) Orbit(1000,v,m->elm,m->nrows/v->ncomp);
}
static object vec_reduce_vec_grp(ww,g) vector* ww; object g;
{ vector* empty=mkvector(0);
object result=vec_lreduce_vec_vec_grp(empty,ww,g); freemem(empty);
return result;
}
static object mat_reflection_vec_grp(rt,g) vector* rt; object g;
{ check_rt(rt,Ssrank(grp=g)); checkroot(rt->compon);
return (object) Reflection(rt->compon);
}
static object vec_rreduce_vec_vec_grp(ww,R,g) vector* ww,* R; object g;
{ vector* result; index i,l=ww->ncomp; entry* w=mkintarray(l);
check_Ww(ww,Ssrank(grp=g)); for (i=0; i<l; i++) w[i]=ww->compon[l-1-i];
result=L_red(R,w,l); freearr(w);
{ index n=result->ncomp-1; entry* res=result->compon; /* reverse */
for (i=0; i<n-i; i++) swap(&res[i],&res[n-i]);
}
return (object) result;
}
static object pol_rpoly_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ index s=Ssrank(grp=g); poly* result; check_Ww(x,s); check_Ww(y,s);
make_q(); result=Rpoly(Canonical(x),Canonical(y)); clear_q();
return (object) result;
}
static object vec_waction_vec_vec_grp(v,word,g) vector* v,* word; object g;
{ vector* result; check_wt(v,Lierank(grp=g)); check_Ww(word,Ssrank(g));
result=copyvector(v); Waction(result->compon,word);
return (object) result;
}
static object mat_waction_vec_grp(word,g) vector* word; object g;
{ check_Ww(word,Ssrank(grp=g)); return (object) Weyl_mat(word); }
static object mat_waction_mat_vec_grp(matrix* m, vector* word, object g)
{ index i; matrix* result;
check_wts(m,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copymatrix(m);
for (i=0; i<result->nrows; ++i) Waction(result->elm[i],word);
return (object) result;
}
static object pol_waction_pol_vec_grp(poly* p, vector* word, object g)
{ index i; poly* result;
check_pol(p,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copypoly(p);
for (i=0; i<result->nrows; ++i) Waction(result->elm[i],word);
return (object) result;
}
static object mat_worbit_vec_grp(vector* v, object g)
{ check_wt(v,Lierank(grp=g)); return (object) Weyl_orbit(v->compon,NULL); }
static object mat_worbitgraph_vec_grp(vector* v, object g)
{ matrix* r,* orbit_graph; check_wt(v,Lierank(grp=g));
r=Weyl_orbit(v->compon,&orbit_graph); freemem(r);
return (object) orbit_graph;
}
static object pol_worbit_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Worbit_p(p); }
static object bin_worbitsize_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Orbitsize(v->compon); }
static object bin_worder_grp(g) object g;
{ return (object) Worder(grp=g); }
static object bin_worder_vec_grp(I,g) object I,g;
{ index i,s=Ssrank(grp=g);
for(i=0; i<I->v.ncomp; i++) if (I->v.compon[i]>s || I->v.compon[i]<=0)
{ Printf("Reflection %ld",(long)I->v.compon[i]);
error(" is out of range.\n");
}
return (object) sub_Worder(&I->v);
}
static object vec_wrtaction_vec_vec_grp(v,word,g) vector* v,* word; object g;
{ index s=Ssrank(grp=g); vector* result; check_rt(v,s); check_Ww(word,s);
result=copyvector(v); Wrtaction(result->compon,word);
return (object) result;
}
static object mat_wrtaction_vec_grp(word,g) vector* word; object g;
{ check_Ww(word,Ssrank(grp=g)); return (object) Weyl_rt_mat(word); }
static object mat_wrtaction_mat_vec_grp(matrix* m, vector* word, object g)
{ index i; matrix* result;
check_wts(m,Lierank(grp=g)); check_Ww(word,Ssrank(g)); result=copymatrix(m);
for (i=0; i<result->nrows; ++i) Wrtaction(result->elm[i],word);
return (object) result;
}
static object mat_wrtorbit_vec_grp(v,g) vector* v; object g;
{ check_rt(v,Ssrank(grp=g)); return (object) Weyl_root_orbit(v->compon); }
static object vec_wword_vec_grp(w,g) vector* w; object g;
{ check_wt(w,Lierank(grp=g)); return (object) Wwordv(w->compon,-1); }
object vec_wword_mat_grp(m,g) matrix* m; object g;
{ if (m->nrows != m->ncols || m->nrows != Lierank(grp=g))
error("Matrix should be square, of size Lie rank.\n");
return (object) Wwordm(m);
}
static object bin_classord_vec(lambda) vector* lambda;
{ index l=lambda->ncomp; check_part(lambda->compon,l);
return (object) Classord(lambda->compon,l);
}
static object vec_frompart_vec(lambda) vector* lambda;
{ if (lambda->ncomp==0) error("Partition should not be empty.\n");
return (object) From_Part_v(lambda->compon,lambda->ncomp);
}
static object mat_frompart_mat(m) matrix* m;
{ if (m->ncols==0) error("Partitions should not be empty.\n");
return (object) From_Part_m(m->elm,m->nrows,m->ncols);
}
static object pol_frompart_pol(p) poly* p;
{ if (p->ncols==0) error("Partitions should not be empty.\n");
return (object) From_Part_p(p);
}
static object vec_nextpart_vec(v) vector* v;
{ index l=v->ncomp; vector* result;
if (check_part(v->compon,l)==0) return (object) v;
while (l>0 && v->compon[l-1]==0) l--;
result=mkvector(l+1);
copyrow(v->compon,result->compon,l); result->compon[l]=0;
Nextpart (result->compon,l); while (result->compon[l]==0) l--;
result->ncomp=l+1; return (object) result;
}
static object vec_nextperm_vec(v) vector* v;
{ index n=v->ncomp; vector* result;
result=mkvector(n); copyrow(v->compon,result->compon,n);
Nextperm(result->compon,n); return (object) result;
}
object vec_nexttab_vec(t) vector* t;
{ index l=t->ncomp; vector* result; entry* res;
result=check_tabl(t); /* perform tests */ freemem(result);
result=mkvector(l); res=result->compon; copyrow(t->compon,res,l);
Nexttableau(res,l); return (object) result;
}
object bin_ntabl_vec(lambda) vector* lambda;
{ index l=lambda->ncomp; check_part(lambda->compon,l);
return (object) n_tableaux(lambda->compon,l);
}
static object mat_partitions_int(p) intcel* p;
{ index n=p->intval;
if(n<0) error("Partitions should be taken of non-negative numbers only.\n");
return (object) Partitions(n);
}
static object vid_prtab_vec(v) vector* v;
{ vector* s; entry* square=v->compon;
index n= v->ncomp, i,r, d=2, m=10;
while(n>=m) {d++; m*=10;} /* d=number of positions needed per entry */
s=check_tabl(v); m=s->ncomp; freemem(s);
for (r=1; r<=m; r++)
{ for (i=0; i<n; i++) if (square[i]==r) Printf("%*ld",(int)d,(long)i+1);
Printf("\n");
}
Printf("\n"); return (object) NULL;
}
static object vec_RS_vec_vec(P,Q) vector* P,* Q;
{ index n=P->ncomp; entry* p,* q; vector* w;
if (n!=Q->ncomp) error("Tableaux not of same size");
{ index i; vector* sp=check_tabl(P),* sq=check_tabl(Q);
boolean ok=(sp->ncomp==sq->ncomp);
if (ok) for(i=0;i<sp->ncomp;i++) if(sp->compon[i]!=sq->compon[i]) ok=0;
freemem(sp); freemem(sq);
if(!ok) error("Tableaux not of same shape\n");
}
if (isshared(P)) { p=mkintarray(n); copyrow(P->compon,p,n); }
else p=P->compon;
if (isshared(Q)) { q=mkintarray(n); copyrow(Q->compon,q,n); }
else q=Q->compon;
w=mkvector(n); Robinson_Schensted(p,q,n,w->compon);
if (p!=P->compon) freearr(p); if (q!=Q->compon) freearr(q);
return (object) w;
}
static object mat_RS_vec(W) vector* W;
{ index i,n=W->ncomp; entry* w=W->compon; matrix* pq;
for(i=0; i<n; i++)
if (w[i]<1 || w[i]>n) error("No permutation: entry out of range.\n");
pq=mkmatrix(2,n); Schensted_Robinson(w,n,pq->elm[0],pq->elm[1]);
return (object) pq;
}
static object int_signpart_vec(v) vector* v;
{ entry* lambda=v->compon; index l=v->ncomp;
check_part(lambda,l); return (object) mkintcel(Sign_part(lambda,l));
}
static object vec_shape_vec(v) vector* v; { return (object) check_tabl(v); }
static object bin_symchar_vec_vec(vector* a,vector* b)
{ entry* lambda=a->compon,* mu=b->compon;
index l=a->ncomp,m=b->ncomp,n=check_part(lambda,l);
if (n!=check_part(mu,m))
error ("Partitions should be of the same number.\n");
return (object) MN_char_val(lambda,mu,l,m);
}
static object poly_symchar_vec(a) vector* a;
{ return (object) MN_char(a->compon,a->ncomp); }
static object mat_symorbit_vec(v) vector* v;
{ return (object) Permutations(v->compon,v->ncomp); }
static object mat_tableaux_vec(lambda) vector* lambda;
{ return (object) Tableaux(lambda->compon,lambda->ncomp);}
static object vec_topart_vec(v) vector* v;
{ return (object) To_Part_v(v->compon,v->ncomp); }
static object mat_topart_mat(m) matrix* m;
{ return (object) To_Part_m(m->elm,m->nrows,m->ncols); }
static object pol_topart_pol(p) poly* p; { return (object) To_Part_p(p); }
static object vec_transpart_vec(v) vector* v;
{ entry* lambda=v->compon; index l=v->ncomp;
check_part(lambda,l); return (object) Trans_part(lambda,l);
}
static object pol_adams_int_vec_grp(d,v,g) intcel* d; vector* v; object g;
{ index r=Lierank(grp=g),n=d->intval;
if (n<=0) error("Scalar factor in Adams should be positive.\n");
check_wt(v,r); return (object) Adams(n,Pol_from_vec(v));
}
static object pol_adams_int_pol_grp(d,p,g) intcel* d; poly* p; object g;
{ index r=Lierank(grp=g),n=d->intval;
if (n<=0) error("Scalar factor in Adams should be positive.\n");
check_pol(p,r); return (object) Adams(n,p);
}
static object pol_adjoint_grp(g) object g;
{ grp=g; return (object) Adjoint(grp); }
static object pol_altdom_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Alt_dom(p); }
static object pol_altdom_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Alt_dom(Pol_from_vec(v)); }
static object pol_altdom_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ check_Ww(w,Ssrank(grp=g)); check_pol(p,Lierank(g));
return (object) Alt_dom_w(p,w);
}
static object pol_altdom_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ check_Ww(w,Ssrank(grp=g)); check_wt(v,Lierank(g));
return (object) Alt_dom_w(Pol_from_vec(v),w);
}
static object pol_alttensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
p=check_pol(p,r); return (object) SAtensor(true,n,p);
}
static object pol_alttensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
check_wt(v,r); return (object) SAtensor(true,n,Pol_from_vec(v));
}
static object pol_altwsum_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) alt_Wsum(p); }
static object pol_altwsum_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) alt_Wsum(Pol_from_vec(v)); }
static object pol_branch_vec_grp_mat_grp(v,h,m,g) vector *v; object h,m,g;
{ index R=Lierank(g),r=Lierank(grp=h); entry* lambda=v->compon;
check_wt(v,R);
if (m->m.nrows!=R)
error ("Number of rows of restriction matrix should match Lie rank.\n");
if (m->m.ncols!=r) error (
"Number of columns of restriction matrix should match rank subgroup.\n");
testdom(lambda,g); return (object) Branch_irr(lambda,m->m.elm,g);
}
static object pol_branch_pol_grp_mat_grp(p,h,m,g) poly *p; object h,m,g;
{ index R=Lierank(g),r=Lierank(grp=h);
p=check_pol(p,R);
if (m->m.nrows!=R)
error ("Number of rows of restriction matrix should match Lie rank.\n");
if (m->m.ncols!=r)
error ("Number of columns of restriction matrix\
should match rank subgroup.\n");
{ index i; for (i=0; i<p->nrows; i++) testdom(p->elm[i],g);}
return (object) Branch(p,m->m.elm,g);
}
object pol_collect_pol_grp_mat_grp(p,h,m,g) poly* p; matrix* m; object h,g;
{ index i,r=Lierank(grp=h),R=Lierank(g); check_pol(p,r);
for(i=0;i<p->nrows;i++) testdom(p->elm[i],h);
if (m->nrows!=r) error ("Number of rows of inverse restriction matrix\
should match rank subgroup.\n");
if (m->ncols!=R) error ("Number of columns of inverse restriction matrix\
should match Lie rank.\n");
return (object) Collect(p,m,1,g);
}
object pol_collect_pol_grp_mat_int_grp(p,h,m,n,g)
poly* p; matrix* m; intcel* n; object h,g;
{ index i,r=Lierank(grp=h),R=Lierank(g); entry d=n->intval; check_pol(p,r);
for(i=0;i<p->nrows;i++) testdom(p->elm[i],h);
if (m->nrows!=r) error ("Number of rows of inverse restriction matrix\
should match rank subgroup.\n");
if (m->ncols!=R) error ("Number of columns of inverse restriction matrix\
should match Lie rank.\n");
if (d<=0) error("Denominator in collect should be positive.\n");
return (object) Collect(p,m,d,g);
}
static object vec_contragr_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); return (object) Contragr(v,grp); }
static object pol_contragr_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Contragr_p(p,grp); }
static object pol_decomp_pol_grp(p,g) poly* p; object g;
{ index i,r=Lierank(grp=g);
check_pol(p,r); for(i=0; i<p->nrows; i++) testdom(p->elm[i],g);
return (object) Decomp(p);
}
static object pol_Demazure_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ check_pol(p,Lierank(grp=g)); check_Ww(w,Ssrank(g));
return (object) Demazure(p,w);
}
static object pol_Demazure_vec_vec_grp(v,w,g) vector* v,* w; object g;
{ check_wt(v,Lierank(grp=g)); check_Ww(w,Ssrank(g));
return (object) Demazure(Pol_from_vec(v),w);
}
static object pol_Demazure_pol_grp(p,g) poly* p; object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* w;
poly*result; check_pol(p,Lierank(grp=g));
for (i=0; i<s; i++) minus_rho[i]= -1;
w=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
result=Demazure(p,w); freemem(w); return (object) result;
}
static object pol_Demazure_vec_grp(v,g) vector* v; object g;
{ index i,s=Ssrank(grp=g); entry* minus_rho=mkintarray(s); vector* w;
poly*result; check_wt(v,Lierank(grp=g));
for (i=0; i<s; i++) minus_rho[i]= -1;
w=Wwordv(minus_rho,Numproots(g)); freearr(minus_rho);
result=Demazure(Pol_from_vec(v),w); freemem(w); return (object) result;
}
static object bin_dim_vec_grp(v,g) vector* v; object g;
{ index r=Lierank(grp=g); vector* t=(check_wt(v,r),Dominant(v));
bigint* result=DimIrr(t->compon); freemem(t); return (object) result;
}
static object bin_dim_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g)); return (object) Dim(p); }
static object pol_domchar_vec_grp(v,g) vector* v; object g;
{ check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
return (object) Domchar_irr(v->compon,NULL);
}
static object pol_domchar_pol_grp(p,g) poly* p; object g;
{ check_pol(p,Lierank(grp=g));
return (object) Domchar_p(p); /* Domchar_p does testdom itself */
}
static object bin_domchar_vec_vec_grp(lambda,w,g) vector* lambda,* w; object g;
{ index r=Lierank(grp=g); entry* mu=mkintarray(r); copyrow(w->compon,mu,r);
check_wt(lambda,r); check_wt(w,r); testdom(lambda->compon,g);
make_dominant(mu);
{ poly* t=Domchar_irr(lambda->compon,mu); bigint* result=t->coef[0];
freearr(mu); freemem(t); return (object) result;
}
}
static object bin_domchar_pol_vec_grp(p,w,g) poly* p; vector* w; object g;
{ index i,r=Lierank(grp=g); entry* mu=mkintarray(r); bigint* result=null;
check_pol(p,r); check_wt(w,r); copyrow(w->compon,mu,r); make_dominant(mu);
for (i=0; i<p->nrows; i++)
{ poly* t=(testdom(p->elm[i],g),Domchar_irr(p->elm[i],mu));
result=add(result,mult(p->coef[i],t->coef[0])); freemem(t);
}
freearr(mu); return (object) result;
}
static object pol_lrtensor_vec_vec(lambda,mu) vector* lambda,* mu;
{ index l=lambda->ncomp;
if (l!=mu->ncomp) error
("partitions for LR_tensor should have same number of parts.\n");
check_part(lambda->compon,l); check_part(mu->compon,l);
return (object) LR_tensor_irr(lambda->compon,mu->compon,l);
}
static object pol_lrtensor_pol_pol(p,q) poly* p,* q;
{ index i,l=p->ncols;
if (l!=q->ncols) error
("exponents for LR_tensor should have same number of parts.\n");
for (i=0; i<p->nrows; i++) check_part(p->elm[i],l);
for (i=0; i<q->nrows; i++) check_part(q->elm[i],l);
return (object) LR_tensor(p,q);
}
static object pol_plethysm_vec_pol_grp(vector* lambda, poly* p, object g)
{ index n=check_part(lambda->compon,lambda->ncomp);
check_pol(p,Lierank(grp=g));
return (object) Plethysm(lambda->compon,lambda->ncomp,n,p);
}
static object pol_plethysm_vec_vec_grp(vector* lambda,vector* mu,object g)
{ index n=check_part(lambda->compon,lambda->ncomp);
check_wt(mu,Lierank(grp=g));
return (object) Plethysm(lambda->compon,lambda->ncomp,n,Pol_from_vec(mu));
}
static object pol_ptensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
p=check_pol(p,r); return (object) Ptensor(n,p);
}
static object pol_ptensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
check_wt(v,r); return (object) Ptensor(n,Pol_from_vec(v));
}
object mat_resmat_mat_grp(m,g) matrix* m; object g;
{ check_rts(m,Ssrank(grp=g)); return (object) Resmat(m); }
static object pol_spectrum_vec_vec_grp (wt,t,g) vector* wt,* t; object g;
{ index r=Lierank(grp=g); check_wt(wt,r); check_toral(t,r,1);
return (object) Spectrum(Pol_from_vec(wt),t);
}
static object pol_spectrum_pol_vec_grp (p,t,g) poly* p; vector* t; object g;
{ index r=Lierank(grp=g); check_pol(p,r); check_toral(t,r,1);
return (object) Spectrum(p,t);
}
static object pol_symtensor_int_pol_grp(d,p,g) object d,g; poly* p;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
p=check_pol(p,r); return (object) SAtensor(false,n,p);
}
static object pol_symtensor_int_vec_grp(d,v,g) object d,g; vector* v;
{ index r=Lierank(grp=g),n=d->i.intval;
if (n<0) error("Cannot take negative tensor power.\n");
check_wt(v,r); return (object) SAtensor(false,n,Pol_from_vec(v));
}
static object pol_tensor_pol_pol_grp(p,q,g) poly* p,* q; object g;
{ entry r=Lierank(grp=g); p=check_pol(p,r); q=check_pol(q,r);
return (object) Tensor(p,q);
}
static object pol_tensor_vec_vec_grp(x,y,g) vector* x,* y; object g;
{ entry r=Lierank(grp=g); check_wt(x,r); check_wt(y,r);
return (object) Tensor(Pol_from_vec(x),Pol_from_vec(y));
}
static object bin_tensor_pol_pol_vec_grp(p,q,nu,g)
poly* p,* q; vector* nu; object g;
{ entry r=Lierank(grp=g); p=check_pol(p,r); q=check_pol(q,r);
check_wt(nu,r); return (object) Tensor_coef(p,q,nu);
}
static object bin_tensor_vec_vec_vec_grp(x,y,z,g) vector* x,* y,* z; object g;
{ entry r=Lierank(grp=g); check_wt(x,r); check_wt(y,r); check_wt(z,r);
return (object) Tensor_coef(Pol_from_vec(x),Pol_from_vec(y),z);
}
static object pol_vdecomp_pol_grp(p,g) poly* p; object g;
{ index i,r=Lierank(grp=g);
check_pol(p,r); for(i=0; i<p->nrows; i++) testdom(p->elm[i],g);
return (object) Vdecomp(p);
}
static object pol_vdecomp_vec_grp(v,g) vector* v; object g;
{ poly* p=Pol_from_vec(v),* result;
check_wt(v,Lierank(grp=g)); testdom(v->compon,g);
result=Vdecomp(p); freepol(p); return (object) result;
}
/* The interfaces of the above defined operations. */
Symbrec static3[] = {
C2("==", int_eq_grp_grp, INTEGER, GROUP, GROUP)
C2("*", grp_mul_grp_grp, GROUP, GROUP, GROUP)
C2("_select", grp_select_grp_int, GROUP, GROUP, INTEGER)
C1("sort",vec_sort_vec,VECTOR,VECTOR)
C1("sort",mat_sort_mat,MATRIX,MATRIX)
C1("unique",mat_unique_mat,MATRIX,MATRIX)
C2("block_mat", mat_blockmat_mat_mat,MATRIX, MATRIX, MATRIX)
C1("_setdefault", vid_setdefault_grp, VOID, GRPDFT)
C0("_setdefault", vid_setdefault, VOID)
C0("_gsetdefault", grp_setdefault, GROUP)
C1("center",mat_center_grp,MATRIX,GRPDFT)
C1("diagram", vid_diagram_grp, VOID, GRPDFT)
C1("dim", int_dim_grp, INTEGER, GRPDFT)
C1("Lie_code", vec_liecode_grp, VECTOR, GRPDFT)
C2("Lie_group", grp_liegroup_int_int, GROUP, INTEGER, INTEGER)
C1("Lie_rank", int_lierank_grp, INTEGER, GRPDFT)
C1("n_comp",int_ncomp_grp, INTEGER, GRPDFT)
C3("Cartan", int_cartan_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
C1("Cartan", mat_cartan_grp, MATRIX, GRPDFT)
C2("Cartan_type", grp_carttype_mat_grp, GROUP, MATRIX, GRPDFT)
C2("cent_roots", mat_centroots_vec_grp, MATRIX, VECTOR, GRPDFT)
C2("cent_roots", mat_centroots_mat_grp, MATRIX, MATRIX, GRPDFT)
C2("centr_type", grp_centrtype_vec_grp, GROUP, VECTOR, GRPDFT)
C2("centr_type", grp_centrtype_mat_grp, GROUP, MATRIX, GRPDFT)
C2("closure", mat_closure_mat_grp, MATRIX, MATRIX, GRPDFT)
C1("det_Cartan", int_detcart_grp, INTEGER, GRPDFT)
C2("dom_weights", mat_domweights_vec_grp, MATRIX, VECTOR, GRPDFT)
C2("fundam", mat_fundam_mat_grp, MATRIX, MATRIX, GRPDFT)
C1("high_root", vec_highroot_grp, VECTOR, GRPDFT)
C1("i_Cartan", mat_icartan_grp, MATRIX, GRPDFT)
C3("inprod", int_inprod_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
C2("norm", int_norm_vec_grp, INTEGER, VECTOR, GRPDFT)
C1("n_pos_roots", int_numproots_grp, INTEGER, GRPDFT)
C1("pos_roots", mat_posroots_grp, MATRIX, GRPDFT)
C2("Bruhat_desc", mat_bhdesc_vec_grp, MATRIX, VECTOR, GRPDFT)
C3("Bruhat_desc", mat_bhdesc_vec_vec_grp, MATRIX, VECTOR, VECTOR, GRPDFT)
C3("Bruhat_leq", int_bhleq_vec_vec_grp, INTEGER, VECTOR, VECTOR, GRPDFT)
C2("canonical", vec_canonical_vec_grp, VECTOR, VECTOR, GRPDFT)
C2("canonical", mat_canonical_mat_grp, MATRIX, MATRIX, GRPDFT)
C2("dominant", vec_dominant_vec_grp, VECTOR, VECTOR, GRPDFT)
C2("dominant", mat_dominant_mat_grp, MATRIX, MATRIX, GRPDFT)
C2("dominant", pol_dominant_pol_grp, POLY, POLY, GRPDFT)
C1("exponents", vec_exponents_grp, VECTOR, GRPDFT)
C2("filter_dom", mat_filterdom_mat, MATRIX, MATRIX, GRPDFT)
C2("filter_dom", pol_filterdom_pol, POLY, POLY, GRPDFT)
C3("KL_poly", pol_klpoly_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C2("length", int_length_vec_grp, INTEGER, VECTOR, GRPDFT)
C1("long_word",vec_longword_grp,VECTOR,GRPDFT)
C3("l_reduce", vec_lreduce_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
C4("lr_reduce",
vec_lrreduce_vec_vec_vec_grp,VECTOR,VECTOR,VECTOR,VECTOR,GRPDFT)
C3("orbit", mat_orbit_int_vec_mat, MATRIX, INTEGER,VECTOR,MATRIX)
C2("orbit", mat_orbit_vec_mat, MATRIX, VECTOR,MATRIX)
C2("reduce", vec_reduce_vec_grp, VECTOR, VECTOR, GRPDFT)
C2("reflection", mat_reflection_vec_grp, MATRIX, VECTOR, GRPDFT)
C3("r_reduce", vec_rreduce_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
C3("R_poly", pol_rpoly_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C3("W_action", vec_waction_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
C2("W_action", mat_waction_vec_grp, MATRIX, VECTOR, GRPDFT)
C3("W_action", mat_waction_mat_vec_grp, MATRIX, MATRIX, VECTOR, GRPDFT)
C3("W_action", pol_waction_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
C2("W_orbit", mat_worbit_vec_grp, MATRIX, VECTOR, GRPDFT)
C2("W_orbit_graph", mat_worbitgraph_vec_grp, MATRIX, VECTOR, GRPDFT)
C2("W_orbit", pol_worbit_pol_grp, POLY, POLY, GRPDFT)
C2("W_orbit_size", bin_worbitsize_vec_grp, BIGINT, VECTOR, GRPDFT)
C1("W_order", bin_worder_grp, BIGINT, GRPDFT)
C2("W_order", bin_worder_vec_grp, BIGINT, VECTOR, GRPDFT)
C3("W_rt_action", vec_wrtaction_vec_vec_grp, VECTOR, VECTOR, VECTOR, GRPDFT)
C2("W_rt_action", mat_wrtaction_vec_grp, MATRIX, VECTOR, GRPDFT)
C3("W_rt_action", mat_wrtaction_mat_vec_grp, MATRIX, MATRIX, VECTOR, GRPDFT)
C2("W_rt_orbit", mat_wrtorbit_vec_grp, MATRIX, VECTOR, GRPDFT)
C2("W_word", vec_wword_vec_grp, VECTOR, VECTOR, GRPDFT)
C2("W_word", vec_wword_mat_grp, VECTOR, MATRIX, GRPDFT)
C1("class_ord",bin_classord_vec,BIGINT,VECTOR)
C1("from_part",vec_frompart_vec,VECTOR,VECTOR)
C1("from_part",mat_frompart_mat,MATRIX,MATRIX)
C1("from_part",pol_frompart_pol,POLY,POLY)
C1("next_part",vec_nextpart_vec,VECTOR,VECTOR)
C1("next_perm",vec_nextperm_vec,VECTOR,VECTOR)
C1("next_tabl",vec_nexttab_vec,VECTOR,VECTOR)
C1("n_tabl",bin_ntabl_vec,BIGINT,VECTOR)
C1("partitions",mat_partitions_int,MATRIX,INTEGER)
C1("print_tab",vid_prtab_vec,VOID,VECTOR)
C1("RS",mat_RS_vec,MATRIX,VECTOR)
C2("RS",vec_RS_vec_vec,VECTOR,VECTOR,VECTOR)
C1("sign_part",int_signpart_vec,INTEGER,VECTOR)
C1("shape",vec_shape_vec,VECTOR,VECTOR)
C2("sym_char",bin_symchar_vec_vec,BIGINT,VECTOR,VECTOR)
C1("sym_char",poly_symchar_vec,POLY,VECTOR)
C1("sym_orbit",mat_symorbit_vec,MATRIX,VECTOR)
C1("tableaux",mat_tableaux_vec,MATRIX,VECTOR)
C1("to_part",vec_topart_vec,VECTOR,VECTOR)
C1("to_part",mat_topart_mat,MATRIX,MATRIX)
C1("to_part",pol_topart_pol,POLY,POLY)
C1("trans_part",vec_transpart_vec,VECTOR,VECTOR)
C3("Adams", pol_adams_int_vec_grp, POLY,INTEGER, VECTOR, GRPDFT)
C3("Adams", pol_adams_int_pol_grp, POLY,INTEGER, POLY, GRPDFT)
C1("adjoint", pol_adjoint_grp, POLY, GRPDFT)
C2("alt_dom", pol_altdom_pol_grp, POLY, POLY, GRPDFT)
C2("alt_dom", pol_altdom_vec_grp, POLY, VECTOR, GRPDFT)
C3("alt_dom", pol_altdom_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
C3("alt_dom", pol_altdom_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C3("alt_tensor", pol_alttensor_int_vec_grp, POLY, INTEGER, VECTOR, GRPDFT)
C3("alt_tensor", pol_alttensor_int_pol_grp, POLY, INTEGER, POLY, GRPDFT)
C2("alt_W_sum", pol_altwsum_pol_grp, POLY, POLY, GRPDFT)
C2("alt_W_sum", pol_altwsum_vec_grp, POLY, VECTOR, GRPDFT)
C4("branch",pol_branch_vec_grp_mat_grp,POLY,VECTOR,GROUP,MATRIX,GRPDFT)
C4("branch",pol_branch_pol_grp_mat_grp,POLY,POLY,GROUP,MATRIX,GRPDFT)
C4("collect", pol_collect_pol_grp_mat_grp,POLY,POLY,GROUP,MATRIX,GRPDFT)
C5("collect", pol_collect_pol_grp_mat_int_grp,POLY,POLY,GROUP,MATRIX,INTEGER,GRPDFT)
C2("contragr", vec_contragr_vec_grp, VECTOR, VECTOR, GRPDFT)
C2("contragr", pol_contragr_pol_grp, POLY, POLY, GRPDFT)
C2("decomp", pol_decomp_pol_grp, POLY, POLY, GRPDFT)
C3("Demazure", pol_Demazure_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
C3("Demazure", pol_Demazure_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C2("Demazure", pol_Demazure_pol_grp, POLY, POLY, GRPDFT)
C2("Demazure", pol_Demazure_vec_grp, POLY, VECTOR, GRPDFT)
C2("dim", bin_dim_vec_grp, BIGINT, VECTOR, GRPDFT)
C2("dim", bin_dim_pol_grp, BIGINT, POLY, GRPDFT)
C3("dom_char", bin_domchar_vec_vec_grp, BIGINT, VECTOR, VECTOR, GRPDFT)
C3("dom_char", bin_domchar_pol_vec_grp, BIGINT, POLY, VECTOR, GRPDFT)
C2("dom_char", pol_domchar_vec_grp, POLY, VECTOR, GRPDFT)
C2("dom_char", pol_domchar_pol_grp, POLY, POLY, GRPDFT)
C2("LR_tensor",pol_lrtensor_vec_vec,POLY,VECTOR,VECTOR)
C2("LR_tensor",pol_lrtensor_pol_pol,POLY,POLY,POLY)
C3("plethysm", pol_plethysm_vec_vec_grp, POLY,VECTOR, VECTOR, GRPDFT)
C3("plethysm", pol_plethysm_vec_pol_grp, POLY,VECTOR, POLY, GRPDFT)
C3("p_tensor", pol_ptensor_int_vec_grp, POLY,INTEGER, VECTOR, GRPDFT)
C3("p_tensor", pol_ptensor_int_pol_grp, POLY,INTEGER, POLY, GRPDFT)
C2("res_mat", mat_resmat_mat_grp, MATRIX, MATRIX, GRPDFT)
C3("spectrum", pol_spectrum_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C3("spectrum", pol_spectrum_pol_vec_grp, POLY, POLY, VECTOR, GRPDFT)
C3("sym_tensor", pol_symtensor_int_vec_grp, POLY, INTEGER, VECTOR, GRPDFT)
C3("sym_tensor", pol_symtensor_int_pol_grp, POLY, INTEGER, POLY, GRPDFT)
C3("tensor", pol_tensor_vec_vec_grp, POLY, VECTOR, VECTOR, GRPDFT)
C3("tensor", pol_tensor_pol_pol_grp, POLY, POLY, POLY, GRPDFT)
C4("tensor", bin_tensor_vec_vec_vec_grp, BIGINT, VECTOR, VECTOR, VECTOR, GRPDFT)
C4("tensor", bin_tensor_pol_pol_vec_grp, BIGINT, POLY, POLY, VECTOR, GRPDFT)
C2("v_decomp", pol_vdecomp_pol_grp, POLY, POLY, GRPDFT)
C2("v_decomp", pol_vdecomp_vec_grp, POLY, VECTOR, GRPDFT)
};
int nstatic3 = array_size(static3);
|