File: examples

package info (click to toggle)
lie 2.2.2%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch, wheezy
  • size: 1,000 kB
  • ctags: 1,801
  • sloc: ansic: 12,761; yacc: 395; makefile: 150; sh: 4
file content (314 lines) | stat: -rw-r--r-- 9,617 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
off gc
maxobjects 9999

union (mat a,b)=unique(a^b)
intersection(mat a,b)= support(X unique(a)+X unique(b)-X union(a,b))

sum(vec v)=v*all_one(size(v))
prod(vec v)= loc p=1; for i in v do p=p*i od; p

fac(int n)=class_ord([n+1])

eval_pol(pol p; vec pt) = loc s=0;
  for i=1 to length(p)
  do loc m=1; for j=1 to size(pt) do m=m*pt[j]^expon(p,i)[j] od;
    s+=coef(p,i)*m
  od; s
eval_pol(pol p; int n)=eval_pol(p,[n])

default(grp g)=g

div(int a,b)=a*inv(b)%p
inv(int x)=
{ loc m=[[x%p,1,0],[p,0,1]];
  while m[1,1] # stop when smaller number becomes 0 #
  do loc q=m[2,1]/m[1,1]; m=[m[2]-q*m[1],m[1]] od;
  if m[2,1]!=1 then error("division by 0") fi; m[2,2]
}

Gauss(mat m) =
{ m=m%p; loc i=1;
  while i<=n_rows(m)
  do if wipe(i) # true unless m[i] was null # then i+=1
     else m=m-i # cast away null row #
     fi
  od;
  savestate; on - lex; sort(m); restorestate; m
}
wipe(int row_nr) =
{ loc v=m[row_nr]; # the row to wipe with #
  loc j=1; while j<=size(v) && !v[j] do j+=1 od;
  if j>size(v) then return 0 # failure # fi;
  v=inv(v[j])*v%p; # normalise, making leading coefficient 1 #
  for i=1 to n_rows(m) do if i!=row_nr then m[i]=m[i]-m[i,j]*v fi od;
  m[row_nr]=v; 1 # success #
}

roots() = loc m=pos_roots; m^-m

toral_dim(grp g)=Lie_rank(g[0])
ss_rank(grp g)=Lie_rank(g)-toral_dim(g)
rho(grp g)=all_one(ss_rank(g))^null(toral_dim(g))

inverse(vec w)= loc l=size(w); loc wi=w;
  for i=1 to l do wi[i]=w[l+1-i] od; wi
pos_neg(vec w)=intersection(pos_roots,W_rt_action(-pos_roots,inverse(w)))

cox_mat1() = loc m=id(ss_rank);
  for i=1 to n_rows(m)-1 do for j=i+1 to n_rows(m)
  do m[i,j] = ord(W_action([i,j])); m[j,i]=m[i,j] od od;  m

ord(mat m) = loc p=m; loc i=1; loc idmat=id(n_rows(m));
  while p!=idmat do p=p*m; i+=1 od; i

cox_mat()= loc m=id(ss_rank); loc c=Cartan;
  for i=1 to n_rows(m)-1 do for j=i+1 to n_rows(m)
  do m[i,j] = 2+c[i,j]*c[j,i]; if m[i,j]==5 then m[i,j]=6 fi;
    m[j,i]=m[i,j]
  od od; m

next_rewrite(vec w; int k)=
{ w=reduce(w); if k+1>size(w) then return w fi;
  loc m= cox_mat[w[k],w[k+1]]; if k+m-1>size(w) then return w fi;
  for i=k+2 to k+m-1 do if w[i] != w[i-2] then return w fi od;
  loc t=w[k+m-2]; for i=k to k+m-2 do w[i]=w[i+1] od;
  w[k+m-1]=t; w
}

all_rewrites(vec w)=
{ w=reduce(w); loc l=size(w); loc m=[w]; loc i=0;
  while i<n_rows(m)
  do i+=1;
    for j=1 to l-1
    do loc next=next_rewrite(m[i],j); loc found=0;
      for k=1 to n_rows(m)
      do if m[k]==next then found=1; break fi od;
      if !found then m=m+next fi
    od
  od; m
}

all_W_words(vec prefix,x)=
{ loc m=null(0,l);
  for i=1 to ss_rank
  do if x[i]<0 then m=m^all_W_words(prefix+i,W_action(x,[i])) fi od;
  if n_rows(m) then m else # x is dominant # [prefix] fi
}

alt_rewrites(vec w)= loc l=length(w); all_W_words([],W_action(rho,inverse(w)))

bruhat(vec w) =
{ loc w=reduce(w); loc m=null(0,size(w)-1);
  for i=1 to size(w)
  do loc v=w-i; if length(v)==size(w)-1 then m=m+v fi od;
  # it  remains to check whether two rows represent words #
  # corresponding to the same Weyl group element #
  m=unique(m); loc rho=all_one(Lie_rank);
  for i=1 to n_rows(m)-1 do for j=i+1 to n_rows(m) do
  if W_action(rho,m[i]) == W_action(rho,m[j]) then m[j]=m[i] fi
  od od ;
  unique(m)
}

inter_pol(vec x,y) =
{ loc result=poly_null(1); if !Bruhat_leq(x,y) then return result fi;
  loc l=length(y); loc lx=length(x); loc level=[y];
  while l>=lx
  do result += n_rows(level) X l;
     loc nl=canonical(Bruhat_desc(x,level[1]));
     for i=2 to n_rows(level)
     do nl=unique(nl^canonical(Bruhat_desc(x,level[i]))) od;
     level=nl; l=l-1
  od; result
}

char_v(vec s)= loc y=rho; for i=1 to size(s) do y[s[i]]=0 od; y

r_cosets(vec s)=for wt row W_orbit(char_v(s)) do print(W_word(wt)) od

l_cosets(vec s)=for wt row W_orbit(char_v(s)) do print(inverse(W_word(wt))) od

double_cosets(vec l,r)=
  for x row W_orbit(char_v(r)) do loc w=W_word(x);
    if w==l_reduce(l,w) then print(w) fi
  od

inspect(grp g)= for r row id(Lie_rank(g)) do print(W_orbit_size(r,g)) od
choose(grp g)= if Lie_code(g)[1]==5 then Lie_rank(g) else 1 fi
semisimple(grp g)=g*Lie_group(0,-toral_dim(g)) # kill the central torus #

translate(int i)=trans[i]

trav(grp g; vec prefix,trans) =
{ loc s=ss_rank(g);
  if s<=3 then
    for r row W_orbit(rho(g),g)
    do action(prefix^make(translate,W_word(r,g))) od
  else loc c=choose(g); loc roots=id(s); loc sub_roots=roots-c;
    loc h=semisimple(Cartan_type(sub_roots,g));
    loc new_trans=fundam(sub_roots,g)*trans; # cumul. translation #
    for r row W_orbit(roots[c],g) # orbit of vector with stabiliser h #
    do loc w=W_word(r,g); trav(h,prefix^make(translate,w),new_trans) od
  fi
}

ii(int n)=n
traverse(grp g)= g=semisimple(g); trav(g,[],make(ii,ss_rank(g)))

action(vec w)= print(w) # a useful initial setting #

# table of Kazhdan-Lustig polynomials, most suited for B3 #
str(vec w) =
  if w==[] then "e"
  else loc s=""; for i=1 to size(w) do s=s+w[i] od; s
  fi

buf=""; first=1
output(tex t)= if length(buf+t)>70 then print(buf+","); buf="  " fi;
  buf = buf+ if first || buf=="  " then t else ", "+t fi; first=0
flush()=if !first then print(buf+"."); first=1 fi

list_KL(vec x) =
{ loc level=[reduce(x^long_word)]; loc l=length(level[1]);
  buf=str(x)+": ";
  while l>0 # case l=0 would not produce any output #
  do loc nl=null(0,l-1);
    for r row level
    do nl=unique(nl^canonical(Bruhat_desc([],r)));
      loc y=reduce(r^long_word); loc p=KL_poly(x,y);
      if p != X0 then output
      ( if p==X1+X0 then str(y) else
	if p==X2+X0 then "("+str(y)+")" else
        if p==X2+X1+X0 then "["+str(y)+"]" else
          ">"+str(y)+"<" fi fi fi
      ) fi
    od; level=nl; l+=-1
  od; flush
}

table_KL()=
{ loc level=[[]]; loc l=0;
  while n_rows(level)
  do l+=1; loc nl=null(0,l);
    for w row level
    do list_KL(w);
      for i=1 to ss_rank do if w+i==canonical(w+i) then nl+= w+i
      fi od
    od ; level=nl
  od
}

toral(vec v) = v=v/gcd(v); loc s=size(v); (v-s)%v[s]+v[s]
mk_toral(vec b; int d)= loc n=size(b);
  for i=2 to n-1 do b[i]=(b[i-1]+b[i])%d od; b[n]=d; b

mk_toral(vec b; int d)= loc n=size(b);
  for i=2 to n-1 do b[i]=(b[i-1]+b[i])%d od; b[n]=d; b

m=[[2,2,2,2,1,1],[0,2,2,2,1,1],[0,0,2,2,1,1],
   [0,0,0,2,1,1],[0,0,0,0,1,1],[0,0,0,0,-1,1]]
mk_tor_d6(vec a; int d)= toral((a*m)%(2*d)+2*d)

spec(pol p; vec t)= loc r=size(t); branch(p,T1,*[t-r])%[t[r]]

char0(vec lambda)=Demazure(lambda)

from_eps(vec lambda)=from_part(lambda)+sum(lambda)
from_eps(pol p)=loc s=poly_null(n_vars(p));
  for i=1 to length(p) do s+=coef(p,i) X from_eps(expon(p,i)) od; s
to_eps(vec wt)= loc n=size(wt); loc v=to_part(wt-n);
  v+ (wt[n]-sum(v))/n * all_one(n)
to_eps(pol p)=loc s=poly_null(n_vars(p));
  for i=1 to length(p) do s+=coef(p,i) X to_eps(expon(p,i)) od; s

char(vec lambda)=W_orbit(dom_char(lambda))

test_KL(vec x,w)=
{ loc result=poly_null(1);
  loc l=length(w); loc lx=length(x); loc dl=l-lx; loc level=[w];
  while l>lx
  do l+=-1; loc nl=null(0,l);
    for y row level
    do result+=R_poly(x,y)*KL_poly(y,w);
      nl=unique(nl^canonical(Bruhat_desc(x,y)))
    od; level=nl
  od; result=={ loc pxw=KL_poly(x,w); X dl*(pxw*[[-1]])-pxw }
}

check_dim(vec lambda)= loc p=dom_char(Lambda); loc d=0;
  for i=1 to length(p) do d+=coef(p,i)*W_orbit_size(expon(p,i)) od;
  d==dim(lambda)

chk_branch(vec wt; grp h; mat m)= dim(branch(wt,h,m),h)==dim(wt)

l(vec mu)= #number of non-zero parts # loc n=size(mu);
  for i=1 to n do if !mu[i] then return i-1 fi od; n
pleth_pol(vec lambda)=
{ loc p=0X0;
  for mu row partitions(sum(lambda))
  do p+=sym_char(lambda,mu)*class_ord(mu) X l(mu) od;
  p
}
pleth_dim(vec lambda; int orig_dim)=
  eval_pol(pleth_pol(lambda),orig_dim)/fac(sum(lambda))

char(pol p; grp g)=W_orbit(dom_char(p,g),g)
check_tensor(vec x,y)= char(tensor(x,y))==char(x)*char(y)
check_branch(vec x; grp h; mat m)=
  char(branch(x,h,m),h)==char(x)*m

check_sq(vec wt)=alt_tensor(2,wt)+sym_tensor(2,wt)==p_tensor(2,wt)

chk_p_tensor(int n; vec wt)= loc d=poly_null(size(wt));
  for lambda row partitions(n)
  do d+=n_tabl(lambda)*plethysm(lambda,wt) od;
  d==p_tensor(n,wt)

branch_comp(vec wt; grp h; mat m; grp g)=
{ loc c=n_cols(m);
  if Lie_rank(h)!=c || Lie_rank(g)!=n_rows(m)
    then error("wrong size restriction matrix") fi;
  loc r=toral_dim(g); loc wk=null(r); loc mk=null(r,c);
  loc i=ss_rank(g);
  for j=1 to r do mk[j]=m[i+j]; wk[j]=wt[i+j] od;
  loc res=alt_dom(wk*mk,h); # central torus part, ensure dominant #
  i=0;
  for k=1 to comp_size(g)
  do r=Lie_rank(g[k]); wk=null(r); mk=null(r,c);
    for j=1 to r do mk[j]=m[i+j]; wk[j]=wt[i+j] od;
    res=tensor(res,branch(wk,h,mk,g[k]),h); i+=r
  od;
  res
}
branch_comp(pol p; grp h; mat m; grp g)=
{ loc s=coef(p,1)*branch_comp(expon(p,1),h,m,g);
  for i=2 to length(p)
  do s+=coef(p,i)*branch_comp(expon(p,i),h,m,g); od;
  s
}

shave(int i;pol p)=loc v=id(n_vars(p))[i]; filter_dom(X(-v)*p)*X v
spread(pol p)=p+W_action(shave(4,p),[4])+W_action(shave(3,p),[3,4])
branch_f4_b4(pol p)=decomp(spread(dom_char(p))*m,B4)

r(int a)= loc p=X[0,0]; loc sum=p;
  for i=1 to a do p=X[1,0]*p+X[0,i]; sum+=p od; sum

s(int b)= loc p=X[b,b]; loc sum=p;
  for i=b-1 downto 0 do p=X[-1,0]*p+X[b,i]; sum+=p od; sum

q(vec lambda)=r(lambda[1])*s(lambda[2])

p(vec lambda)=
  if lambda[1]>0 && lambda[2]>0
  then q(lambda)-X[1,1]*q(lambda-[1,1]) else q(lambda)
  fi

Levi_mat(int i)=fundam(id(Lie_rank)-i) # remove i-th row and renumber #
Levi_type(int i)=Cartan_type(Levi_mat(i))
Levi_diagram(int i)=diagram(Levi_type(i))
Levi_res_mat(int i)= res_mat(Levi_mat(i))
Levi_branch(vec v; int i) =
  loc m=Levi_mat(i); branch(v,Cartan_type(m),res_mat(m))

on gc