File: coxeter.c

package info (click to toggle)
lie 2.2.2%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 1,040 kB
  • sloc: ansic: 12,761; yacc: 395; makefile: 111; sh: 4
file content (470 lines) | stat: -rw-r--r-- 15,635 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#include  "lie.h"
#define local  static
#define backup(i) (i=(i<=2 ? 0 : i-2))
#define Bh(x,y)   (copyrow(x,v,s),copyrow(y,w,s),Bruhat(v,w))
#define P(x,y,e,d)  (copyrow(x,v,s),copyrow(y,w,s),KL(v,w,e,d,s))

entry simp_inprod(entry* x,entry * y,simpgrp* g)
{ index i,j, r=g->lierank;
  entry* norm=(simp_proots(g),g->root_norm->compon);
  entry** cartan=g->cartan->elm; entry result=0;
  for (j=0; j<r; ++j)
  { entry s=0; for (i=0; i<r; ++i) s += x[i] * cartan[i][j];
    result += s * norm[j]*y[j];
  }
  return result;
}

entry Inprod(entry* x,entry * y)
{ if (type_of(grp)==SIMPGRP) return simp_inprod(x,y,&grp->s);
  { index i,t=0,result=0;
    for (i=0; i<grp->g.ncomp; ++i)
    { simpgrp* g=Liecomp(grp,i);
      result+=simp_inprod(&x[t],&y[t],g); t+=g->lierank;
    }
    return result;
  }
}

entry simp_norm(entry* alpha, simpgrp* g)
{ index i,r=g->lierank; entry level=0,result; boolean neg;
  for (i=0; i<r; ++i) level+=alpha[i]; /* compute level of |alpha| */
  neg=level<0;
  if (neg) { level= -level; for(i=0; i<r; ++i) alpha[i]= -alpha[i]; }
  i=find_root(alpha,level,g); assert(i>=0); result=g->root_norm->compon[i];
  if (neg)  for(i=0; i<r; ++i) alpha[i]= -alpha[i]; /* restore |alpha| */
  return result;
}

entry Norm(entry* alpha)
{ if (type_of(grp)==SIMPGRP) return simp_norm(alpha,&grp->s);
  if (grp->g.ncomp==1) return simp_norm(alpha,Liecomp(grp,0));
  { index i,j,t=0;
    for (i=0; i<grp->g.ncomp; ++i)
    { simpgrp* g=Liecomp(grp,i); index r=g->lierank;
      for (j=0; j<r; ++j) 
	if (alpha[t+j]!=0) return simp_norm(&alpha[t],g);
      t+=r;
    }
    assert(false); return 0; /* zero vector is not a root */
  }
}

entry Cart_inprod(entry* x, entry* alpha)
{ return Inprod(x,alpha)/Norm(alpha); }

local matrix* simp_refl(entry* alpha,simpgrp* g,matrix* m, index offset)
{ index i,r=g->lierank; entry* row=mkintarray(2*r),* col=&row[r];
  
  { index norm_alpha=simp_norm(alpha,g); entry* norm=g->root_norm->compon;
    mulvecmatelm(alpha,g->cartan->elm,row,r,r); /* |alpha| on weight basis */
    copyrow(alpha,col,r);
    for (i=0; i<r; ++i) col[i]=(col[i]*norm[i])/norm_alpha;
    /* $\rf\alpha$ on coroot basis */
  }
  for (i=0; i<r; ++i) add_xrow_to(&m->elm[offset+i][offset],-col[i],row,r);
  freearr(row); return m;
}

matrix* Reflection(entry* alpha)
{ index i,j,t=0; matrix* R=mat_id(Lierank(grp));
  if (type_of(grp)==SIMPGRP) return simp_refl(alpha,&grp->s,R,0);
  if (grp->g.ncomp==1) return simp_refl(alpha,Liecomp(grp,0),R,0);
  for (i=0; i<grp->g.ncomp; ++i)
  { simpgrp* g=Liecomp(grp,i); index r=g->lierank;
    for (j=0; j<r; ++j) 
      if (alpha[t+j]!=0) return simp_refl(&alpha[t],Liecomp(grp,i),R,t);
    t+=r;
  }
  assert(false); return R; /* zero vector is not a root */
}

index simp_make_dominant(entry* lambda, simpgrp* g)
{ index i=0,l=0, r=g->lierank;
  do
  { while (lambda[i]>=0)  if (++i==r) return l;
      /* find first negative entry */
    simp_w_refl(lambda,i,g); ++l;
    backup(i); /* reflect and count, then back up */
  } while(true);
}

index make_dominant(entry* lambda)
{ index i=0,l=0; index s=Ssrank(grp); /* do not affect the toral part */
  if (s==0) return 0; /* this trivial case must be taken out */
  do
  { while (lambda[i]>=0) if (++i==s) return l;
    w_refl(lambda,i); ++l; backup(i);
  } while(true);
}

local index dom_length(entry* lambda)
{ index l,s=Ssrank(grp); entry* x=mkintarray(s);  copyrow(lambda,x,s);
  l=make_dominant(x); freearr(x); return l;
}

vector* Dominant(vector* lambda)
{ vector* result=copyvector(lambda);
  make_dominant(result->compon); return result;
}

index Length(vector* w)
{ index i,s=Ssrank(grp),l=0; entry* x=mkintarray(s),wi;
  for (i=0; i<s; ++i) x[i]=1; /* |x=rho| */
  for (i=0; i<w->ncomp; ++i)
    if ((wi=w->compon[i]-1)>=0)
    { if (x[wi]>0) ++l;  else --l; w_refl(x,wi); }
  freearr(x); return l;
}

vector* Wwordv(entry* lambda, index l)
{ index i=0,j=0,s=Ssrank(grp); entry* x=mkintarray(s);
  vector* result=mkvector(l>=0 ? l : dom_length(lambda));
  copyrow(lambda,x,s); if (s==0) { freearr(x); return result; }
  do
  { while (x[i]>=0)  if (++i==s) { freearr(x); return result; }
    w_refl(x,i); result->compon[j++]= i+1; backup(i);
  } while(true);
}

vector* Wwordm(matrix* m)
{ index i,l=0,s=Ssrank(grp);
  entry* x=mkintarray(2*s),* y=&x[s];
  vector* result;
  for (i=0; i<s; ++i) y[i]=1; /* |y=rho| */
  mulvecmatelm(y,m->elm,x,s,s); /* |x=rho*@t$m\v_{s\times s}$@>| */
  i=0;
  if (s>0) do
  { while (x[i]>=0)  if (++i==s) goto finish;
    w_refl(x,i); w_refl(y,i); ++l;
    backup(i);
  } while(true);
finish: result=Wwordv(y,l); freearr(x);
  
  { matrix* check=Weyl_mat(result); index r=Lierank(grp);
    for (i=0; i<r; ++i) if (!eqrow(m->elm[i],check->elm[i],r))
      error("Matrix does not correspond to a Weyl group element.\n");
    freemem(check);
  }
  return result;
}

vector* Canonical(vector* w)
{ index i,l=w->ncomp,s=Ssrank(grp),wi;
  entry* x=mkintarray(s); vector* result;
  for (i=0; i<s; ++i) x[i]=1; /* |x=rho| */
  for (i=l-1; i>=0; --i) /* apply reverse of |w| to |x| */
    if ((wi=w->compon[i]-1)>=0) { w_refl(x,wi); if (x[wi]>0) l-=2; }
     else --l;
  result=Wwordv(x,l); freearr(x); return result;
}

matrix* Canonicals(matrix* m)
{ index k,n=m->nrows,s=Ssrank(grp); matrix* result=mkmatrix(n,m->ncols);
  entry* x=mkintarray(s);
  for (k=0; k<n; ++k)
  { entry* w= m->elm[k]; index i,l=m->ncols,wi; vector* t;
    for (i=0; i<s; ++i) x[i]=1;
    for (i=l-1; i>=0; --i)
      if ((wi=w[i]-1)<0) --l;  else { if (x[wi]<0) l-=2; w_refl(x,wi); }
    t=Wwordv(x,l); copyrow(t->compon,result->elm[k],l); freemem(t);
    for (i=l; i<m->ncols; ++i) result->elm[k][i]=0; /* fill out with 0's */
  }
  freearr(x); return result;
}

matrix* Filter_dom_m(matrix* m)
{ index i,j,s=Ssrank(grp),count=0; entry* inx=mkintarray(m->nrows);
  for (i=0; i<m->nrows; ++i) /* get indices of dominant rows into |inx| */
  { for (j=0; j<s; ++j)  if (m->elm[i][j]<0) break;
    if (j==s) inx[count++]=i;
  }
  { index r=m->ncols; matrix* result=mkmatrix(count,r);
    for (i=0; i<count; ++i) copyrow(m->elm[inx[i]],result->elm[i],r);
    freearr(inx); return result;
  }
}

poly* Filter_dom(poly* p)
{ index i,j,s=Ssrank(grp),count=0; entry* inx=mkintarray(p->nrows);
  for (i=0; i<p->nrows; ++i) /* get indices of dominant rows into |inx| */
  { for (j=0; j<s; ++j)  if (p->elm[i][j]<0) break;
    if (j==s) inx[count++]=i;
  }
  if (count==0) { freearr(inx); return poly_null(p->ncols); }
  { index r=p->ncols; poly* result=mkpoly(count,r);
    for (i=0; i<count; ++i)
    { copyrow(p->elm[inx[i]],result->elm[i],r);
      result->coef[i]=p->coef[inx[i]]; setshared(result->coef[i]);
    }
    freearr(inx); return result;
  }
}

local entry* fix_vec (vector* I, index s)
{ index i; entry* x=mkintarray(s);
  for (i=0; i<s; i++) x[i]=1; /* initialise to positive entries */
  for (i=0; i<I->ncomp; i++)
  { entry e=I->compon[i];
    if (e<=0 || e>s) error("Reflection %ld is out of range.\n",(long)e);
    x[e-1]=0; /* now reflection $r_e$ stabilises |x| */
  }
  return x;
}

vector* L_red(vector* L, entry* w, index lw)
{ index i,s=Ssrank(grp),l=lw;
    /* current length of word; decreases during reduction */
  entry* x=fix_vec(L,s),* y=mkintarray(s); /* current vector and temporary */
  for (i=0; i<lw; i++)
    
    { entry wi=w[i]-1; /* internally, reflections are numbered $0,\ldots,s-1$ */
      if (w[i]==0) --l; /* ignore zero entry */
      else if (x[wi]==0) { w[i]=0; --l; } /* |wi| stabilises |x|, delete it */
      else if (w_refl(x,wi),x[wi]>0)
        /* act on~$x$ with $w_i$; test if length decreased */
        
        { index j=i;  copyrow(x,y,s); /* make a temporary copy of~|x| */
          do
            if (w[--j]!=0)
              if (y[w[j]-1]<0) w_refl(y,w[j]-1);  else break;
          while (true);
          w[j]=w[i]=0; l-=2; /* cancel reflections by exchange condition */
        }
    }
  freearr(x); freearr(y);
  
  { vector* result=mkvector(l); entry* res=result->compon;
    for (i=0; i<lw; i++)  if (w[i]!=0) *res++=w[i];
    return result;
  }
}

vector* Reduce (vector* v)
{ vector* empty=mkvector(0),* result; index lw=v->ncomp;
  entry* w=mkintarray(lw);
  copyrow(v->compon,w,lw); result=L_red(empty,w,lw);
  freemem(empty); freearr(w); return result;
}

vector* LR_red(vector* L,entry* w,index lw,vector* R)
{ 
  { vector* t=L_red(L,w,lw);
    lw=t->ncomp; copyrow(t->compon,w,lw); freemem(t);
  }
  { index i,l=lw; entry* x=fix_vec(R,Ssrank(grp));
    for (i=lw-1; i>=0; i--) /* see if |wi| can be eliminated */
    { entry wi=w[i]-1;
      if (x[wi]==0) { w[i]=0; --l; } /* |wi| stabilises |x|, delete it */
      else w_refl(x,wi); /* we have |x[wi]>0|; the length increases */
    }
    freearr(x);
    
    { vector* result=mkvector(l); entry* res=result->compon;
      for (i=0; i<lw; i++)  if (w[i]!=0) *res++=w[i];
      return result;
    }
  }
}

local boolean Bruhat(entry* x,entry* y) /* modifies arguments */
{ index i,s=Ssrank(grp), d; entry* delta=mkintarray(s);
  
  { matrix* ic=Icartan(); index dc=Detcartan(); entry* t=mkintarray(s);
    subrow(x,y,t,s); mulvecmatelm(t,ic->elm,delta,s,s);
    freemem(ic); freearr(t);
    for (d=0, i=0; i<s; ++i)
      if ((delta[i]/=dc)<0) { freearr(delta); return false; } 
      else d+= delta[i];
  }
  for (i=0; d>0; backup(i))
  { while (y[i]>=0) ++i; /* find first |y[i]<0|; it exists */
    
    { w_refl(y,i); delta[i]-=y[i]; d-=y[i];
      if (x[i]<0) { w_refl(x,i); delta[i]+=x[i]; d+=x[i]; }
    }
    if (delta[i]<0) { freearr(delta); return false; }
      /* because we no longer have $y\prec x$ */
  }
  freearr(delta);
  return true; /* |delta==0|, so |x| and |y| have become equal */
}

boolean Bh_leq(vector* v,vector* w)
{ index i,s=Ssrank(grp); entry* x=mkintarray(2*s),* y=&x[s]; boolean result;
  for (i=0; i<s; ++i) x[i]=y[i]=1;
  Waction(x,v); Waction(y,w); /* $x\K\rho\cdot v$ and $y\K\rho\cdot w$ */
  result = Bruhat(x,y); freearr(x); return result;
}

matrix* Bh_desc(entry* w, index l) /* |w| is reduced of length |l| */
{ entry* inx; index s=Ssrank(grp),n_desc=0;
  if (l==0) return mkmatrix(0,0); /* avoid attempting a $0\times-1$ matrix */
  
  { index i,j; entry* x=(inx=mkintarray(l+s),&inx[l]);
    for (i=0; i<l; ++i)
    { for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
      for (j=0; j<l; ++j)  if (j!=i)
      { entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
      if (j==l) inx[n_desc++]=i; /* if reduced, record |i| */
    }
  }
  
  { matrix* result=mkmatrix(n_desc,l-1); index i,j;
    for (i=0; i<n_desc; ++i)
    { entry* row= result->elm[i];
      for (j=0; j<l; ++j) if (j!=inx[i]) *row++=w[j];
    }
    freearr(inx); return result;
  }
}

matrix* Bh_desc_rel(entry* w, index l, entry* lwb)
{ entry* inx; index s=Ssrank(grp),n_desc=0;
  if (l==0) return mkmatrix(0,0); /* avoid attempting a $0\times-1$ matrix */
  
  { index i,j; entry* x=(inx=mkintarray(l+2*s),&inx[l]), *y=&x[s];
    for (i=0; i<l; ++i)
    { for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
      for (j=0; j<l; ++j)  if (j!=i)
      { entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
      if (j==l && (copyrow(lwb,y,s),Bruhat(y,x))) inx[n_desc++]=i;
    }
  }
  
  { matrix* result=mkmatrix(n_desc,l-1); index i,j;
    for (i=0; i<n_desc; ++i)
    { entry* row= result->elm[i];
      for (j=0; j<l; ++j) if (j!=inx[i]) *row++=w[j];
    }
    freearr(inx); return result;
  }
}

local void Bh_descs(matrix** m, entry* lwb, index s)
{ vector* word=Wwordv((*m)->elm[0],-1); entry* w=word->compon;
  index i,j,k,l=word->ncomp,n_desc=0;
  matrix* descs=mkmatrix(((*m)->nrows)*l+1,s);
  entry* x=mkintarray(2*s),* y=&x[s]; /* working arrays */
  for (k=0; ; w=(word=Wwordv((*m)->elm[k],l))->compon)
  { 
    for (i=0; i<l; ++i)
    { for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
      for (j=l-1; j>=0; --j)  if (j!=i)
      { entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
      if (j<0 && (copyrow(lwb,y,s),copyrow(x,descs->elm[n_desc],s),Bruhat(y,x)))
        ++n_desc;
    }
 
    freemem(word);
    if (++k==(*m)->nrows) break;
  }
  descs->nrows=n_desc;
  freearr(x); freemem(*m); *m=Unique(descs,cmpfn);
}

static poly* q,* q_1;
   /* |q| respectively |q-1|, when initialised */
void make_q (void)
{ (q=mkpoly(1,1))->elm[0][0]=1; *q->coef=one; setshared(q);
    /* $X^{[1]}$ means |q| */
  q_1= Add_pol_pol(q,poly_one(1),true); setshared(q_1);
    /* $X^{[1]}-X^{[0]}$ means |q-1| */
}
void clear_q (void) 
{ clrshared(q); freepol(q); clrshared(q_1); freepol(q_1); }

local poly* R(entry* x, entry* y, index k, index d, index s)
  /* modifies |x| and |y| */
{ index i; entry* v=mkintarray(2*s),* w=&v[s];
  poly* sum=poly_null(1);
  while (d>0) /* |d==length(y)-length(x)| */
  { if (!Bh(x,y)) { freearr(v);return sum;}
    
    for (i=0; ; backup(i))
    { do { if (x[i]<0 && y[i]<0) break;} while (++i<s);
      if (i==s) break;
      w_refl(x,i); w_refl(y,i);
    }
    
    for (i=0; y[i]>=0; ++i) {}
    
    { w_refl(y,i); copyrow(x,v,s); copyrow(y,w,s);
      sum=Add_pol_pol(sum,Mul_pol_pol(q_1,R(v,w,k,d-1,s)),false);
    }
    w_refl(x,i); d-=2; ++k;
      /* repeat with $x\K xs_i$, $y\K ys_i$, adjusted~|d|,
         and increased~|k| */
  }
  freearr(v);
  if (d==0 && eqrow(x,y,s)) /* if |x==y|, add final $q^k$ */
  { poly* q_k=copypoly(q); q_k->elm[0][0]=k;
    sum= Add_pol_pol(sum,q_k,false);
  }
  return sum;
}

poly* Rpoly(vector* x,vector* y)
{ index i,s=Ssrank(grp); entry* v=mkintarray(2*s),* w=&v[s]; poly* result;
  for (i=0; i<s; ++i) v[i]=w[i]=1;
  Waction(v,x); Waction(w,y);
  result=R(v,w,0,dom_length(w)-dom_length(v),s); freearr(v); return result;
}

local poly* KL(entry* x, entry* y, index e, index d, index s)
{ index i; entry* v=mkintarray(2*s),* w=&v[s]; poly* result;
  if (d<0 || !Bh(x,y)) { freearr(v); return poly_null(1); }
  if (d<3)  triv_result: /* return $q^e$ when |l(y)-l(x)<3| */
    { poly* qe=mkpoly(1,1); qe->coef[0]=one; qe->elm[0][0]=e;
      freearr(v); return qe;
    }
  
  do
  { for (i=0; ; backup(i))
    { do { if (x[i]>0 && y[i]<0) break; } while (++i<s);
      if (i==s) break;
      w_refl(x,i); if(--d<3) goto triv_result;
    }
    for (i=0; i<s; ++i)
      if (y[i]<0) /* then also |x[i]<0|, because of the loop above */
        if (w_refl(y,i),Bh(x,y)) w_refl(y,i);  else { w_refl(x,i); break; }
  } while (i<s); 
  for (i=0; y[i]>=0; ++i) {}
    /* find $i$ with $ys_i<y$; it exists since |y!=e| */
  w_refl(y,i); --d; /* put $y\K ys_i$, maintain |d==l(y)-l(x)| */

  
  { matrix* level=mkmatrix(1,s); index j,c=1; /* |c==(l(y)-l(z)+1)/2| */
    
    { poly* Pxy=P(x,y,e+1,d);
      w_refl(x,i); result=Add_pol_pol(P(x,y,e,d+1),Pxy,false); w_refl(x,i);
    }
    copyrow(y,level->elm[0],s); Bh_descs(&level,x,s);
    --d; /* |d==l(z)-l(x)| */
    do
    { for (j=0; j<level->nrows; ++j)
      { entry* z=level->elm[j];
        if (z[i]<0) 
                   { poly* Pzy=P(z,y,0,2*c-1);
                     if (Pzy->nrows!=0 && Pzy->elm[0][0]==c-1 && Pzy->coef[0]->size!=0)
                       /* |mu(z,y)!=0| */
                     { bigint* mu=sub(null,Pzy->coef[0]); freepol(Pzy);
                       result=Addmul_pol_pol_bin(result,P(x,z,e+c,d),mu);
                     }
                   }
  
      }
      if (d<2) { freemem(level); break;} /* we cannot go down 2 more levels */
      Bh_descs(&level,x,s); Bh_descs(&level,x,s); d-=2; ++c;
    } while(true);
  }
  freearr(v); return result;
}

poly* KLpoly(vector* x,vector* y)
{ index i,s=Ssrank(grp); entry* v=mkintarray(2*s),* w=v+s; poly* result;
  for (i=0; i<s; ++i) v[i]=w[i]=1;
  Waction(v,x); Waction(w,y);
  result=KL(v,w,0,dom_length(w)-dom_length(v),s); freearr(v); return result;
}