File: grpdata.c

package info (click to toggle)
lie 2.2.2%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 1,040 kB
  • sloc: ansic: 12,761; yacc: 395; makefile: 111; sh: 4
file content (406 lines) | stat: -rw-r--r-- 13,938 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include  "lie.h"
#define local  static

boolean wronggroup(char lietype,index rank)
{ return lietype=='T' ? rank<0
       : lietype=='A' ? rank<1
     : lietype=='B' ? rank<2
       : lietype=='C' ? rank<2
       : lietype=='D' ? rank<3
     : lietype=='E' ? rank<6 || rank>8
       : lietype=='F' ? rank!=4
       : rank!=2;
}

boolean simpgroup(object g)
{ return (g->g.toraldim==0 && g->g.ncomp==1); }

index Lierank(object grp)
{ index i,r;  if (type_of(grp)==SIMPGRP) return grp->s.lierank;

  r=grp->g.toraldim; 
  for (i=0; i<grp->g.ncomp; ++i) r += (Liecomp(grp, i))->lierank;
  return r;
}

index Ssrank(object g) /* Semisimple rank */
{ index i,r=0;  if (type_of(g)==SIMPGRP) return g->s.lierank;
  for (i=0; i<g->g.ncomp; ++i) r += (Liecomp(g,i))->lierank;
  return r;
}

matrix* simp_Cartan(simpgrp* g)
{ if (g->cartan!=NULL) return g->cartan;
  { entry r=g->lierank; matrix* cartan=g->cartan=mat_null(r,r);
    entry** m=cartan->elm; 
    setlonglife(cartan); /* make Cartan matrix permanent */
    
    { index i; m[0][0]=2;
      for (i=1; i<r; ++i) { m[i][i]=2; m[i-1][i]=m[i][i-1]= -1; }
    }
    switch (g->lietype)
    {	    case 'B': m[r-2][r-1]= -2;
    break;  case 'C': m[r-1][r-2]= -2;
    break;  case 'D': m[r-3][r-1]=m[r-1][r-3]= -1;
		      m[r-2][r-1]=m[r-1][r-2]=0;
    break;  case 'E': m[0][1]=m[1][0]=m[1][2]=m[2][1]=0;
		      m[0][2]=m[2][0]=m[1][3]=m[3][1]= -1;
    break;  case 'F': m[1][2]= -2;
    break;  case 'G': m[1][0]= -3;
    }
    return cartan;
  }
}

matrix* Cartan(void)
{ if (type_of(grp)==SIMPGRP) return simp_Cartan(&grp->s);
  if (simpgroup(grp)) return simp_Cartan(Liecomp(grp,0));
  { index i,j, t=0;
    matrix* cartan=mat_null(Ssrank(grp),Lierank(grp));
    for (i=0; i<grp->g.ncomp; ++i)
    { index r=Liecomp(grp,i)->lierank;
      entry** c=simp_Cartan(Liecomp(grp,i))->elm;
      for (j=0; j<r; ++j) copyrow(c[j],&cartan->elm[t+j][t],r);
      t+=r;
    }
    return cartan;
  }
}

entry simp_detcart(simpgrp* g)
{ char t=g->lietype; index r=g->lierank; 
  return t=='A' ? r+1
       : t=='B' || t=='C' ? 2
       : t=='D' ? 4
       : t=='E' ? 9-r
       : 1;
}

entry Detcartan(void)
{ if (type_of(grp)==SIMPGRP) return simp_detcart(&grp->s);
  { index i; entry result=1;
    for (i=0; i<grp->g.ncomp; ++i) result *= simp_detcart(Liecomp(grp,i));
    return result;
  }
}

matrix* simp_icart(simpgrp* g)
{ if (g->icartan) return g->icartan;
  { index i, j, r=g->lierank;
    matrix* icartan=g->icartan=mkmatrix(r,r); entry** m=icartan->elm;
     setlonglife(icartan); /* permanent data */
    switch (g->lietype)
    {	      case 'A':
      for (i=0; i<r; ++i)  for (j=0; j<=i; ++j)
	m[i][j]=m[j][i]=(r-i)*(j+1);
     break; case 'B':
      for (i=0; i<r; ++i)  for (j=0; j<=i; ++j) m[i][j]=m[j][i]=2*(j+1);
      for (i=0; i<r; ++i) m[r-1][i]=i+1;
     break; case 'C':
      for (i=0; i<r; ++i)  for (j=0; j<=i; ++j) m[i][j]=m[j][i]=2*(j+1);
      for (i=0; i<r; ++i) m[i][r-1]=i+1;
     break; case 'D':
      for (i=0; i<r-2; ++i)  for (j=0; j<=i; ++j) m[i][j]=m[j][i]=4*(j+1);
      for (i=0; i<r-2; ++i) m[r-1][i]=m[r-2][i]=m[i][r-1]=m[i][r-2]=2*(i+1);
      m[r-1][r-1]=m[r-2][r-2]=r; m[r-1][r-2]=m[r-2][r-1]=r-2;
     break; case 'E':
      m[0][0]=4; m[1][0]=m[0][1]=r-3; m[0][2]=m[2][0]=r-1;
      m[1][1]=r; m[1][2]=m[2][1]=2*r-6; m[2][2]=2*r-2;
      for (i=1; i<r-2; ++i)  for (j=0; j<3; ++j) m[r-i][j]=m[j][r-i]=(j+2)*i;
      for (i=1; i<r-2; ++i)  for (j=1; j<=i; ++j)
	m[r-i][r-j]=m[r-j][r-i]=(9-r+i)*j;
     break; case 'F':
      for (i=1; i<4; ++i)  for (j=1; j<4; ++j) m[r-i][j-1]=i*j;
      m[1][2]=8;
      for (i=0; i<3; ++i) m[0][i]=m[r-i-1][3]=i+2;
      m[0][3]=2;
     break; case 'G': m[0][0]=m[1][1]=2; m[0][1]=1; m[1][0]=3;
    }
    return icartan;
  }
}

matrix* Icartan(void)
{ if (simpgroup(grp)) return simp_icart(Liecomp(grp,0));
  { matrix* result=mat_null(Lierank(grp),Ssrank(grp)); entry** m=result->elm;
    index k,t=0;
    entry det=Detcartan(); /* product of determinants of simple factors */
    for (k=0; k<grp->g.ncomp; ++k)
    { simpgrp* g=Liecomp(grp,k);
      index i,j,r=g->lierank;
      entry** a=simp_icart(g)->elm;
      entry f=det/simp_detcart(g); /* multiplication factor */
      for (i=0; i<r; ++i)  for (j=0; j<r; ++j) m[t+i][t+j]=f*a[i][j];
      t+=r;
    }
    return result;
  }
}

local entry* simp_exponents (simpgrp* g)
{ if (g->exponents!=NULL) return g->exponents->compon;
  { static entry
      exp_E[3][7] = {{4,5,7,8,11},{5,7,9,11,13,17},{7,11,13,17,19,23,29}}
    , exp_F4[3] = {5,7,11};
    index i,r=g->lierank; entry* e=(g->exponents=mkvector(r))->compon; 
    setlonglife(g->exponents); e[0]=1;
    switch (g->lietype)
    {	 case 'A': /* $1,2,3,\ldots,r$ */
      for (i=1; i<r; ++i) e[i]=i+1; 
    break; case 'B': case 'C': /* $1,3,5,\ldots,2r-1$ */
      for (i=1; i<r; ++i) e[i]=2*i+1; 
    break; case 'D': /* $1,3,5,\ldots,r-2,r-1,r,\ldots,2r-3$
                     or $1,3,5,\ldots,r-1,r-1,\ldots,2r-3$ */
	for (i=0; 2*i+1<r; ++i) { e[i]=2*i+1; e[r-i-1]=2*(r-i)-3; }
	if (2*i+1==r) e[i]=r-1; 
    break; case 'E': copyrow(exp_E[r-6],&e[1],r-1);
    break; case 'F': copyrow(exp_F4,&e[1],3);
    break; case 'G': e[1]=5;
    }
    return e;
  }
}

vector* Exponents(object grp)
{ if (type_of(grp)==SIMPGRP)
    { simp_exponents(&grp->s); return grp->s.exponents; }
  if (simpgroup(grp))
    { simp_exponents(Liecomp(grp,0)); return Liecomp(grp,0)->exponents; }
  { index i,t=0; vector* v=mkvector(Lierank(grp)); entry* e=v->compon;
    { for (i=0; i<grp->g.ncomp; ++i)
      { simpgrp* g=Liecomp(grp,i); index r=g->lierank; 
	copyrow(simp_exponents(g),&e[t],r); t+=r;
      }
      for (i=0; i<grp->g.toraldim; ++i) e[t+i]=0;
    }
    return v;
  }
}

index simp_numproots(simpgrp* g)
{ index r=g->lierank; return r*(1+simp_exponents(g)[r-1])/2; }

index Numproots(object grp) /* should really return bigint */
{ if (type_of(grp)==SIMPGRP) return simp_numproots(&grp->s);
  { index i,d=0; 
    for (i=0; i<grp->g.ncomp; ++i) d += simp_numproots(Liecomp(grp,i));
    return d;
  }
}

matrix* simp_proots(simpgrp* g)
{ if (g->roots!=NULL) return g->roots;
  { index r=g->lierank,l,i,last_root;
    entry** cartan=simp_Cartan(g)->elm;
    entry** posr=(g->roots=mkmatrix(simp_numproots(g),r))->elm;
    entry* level=(g->level=mkvector(simp_exponents(g)[r-1]+1))->compon;
    entry* norm=(g->root_norm=mkvector(g->roots->nrows))->compon;
    entry* alpha_wt=mkintarray(r);
      /* space to convert roots to weight coordinates */
    setlonglife(g->roots),
    setlonglife(g->level),
    setlonglife(g->root_norm); /* permanent data */
    
    { index i,j;  for (i=0; i<r; ++i)  for (j=0; j<r; ++j) posr[i][j] = i==j;
      level[0]=0; last_root=r;
      for (i=0; i<r; ++i) norm[i]=1; /* norms are mostly |1| */
      switch (g->lietype) /* here are the exceptions */
      {	    case 'B': 
        for (i=0; i<r-1; ++i) norm[i]=2; /* $2,2,\ldots,2,1$ */
       break; case 'C': norm[r-1]=2; /* $1,1,\ldots,1,2$ */
       break; case 'F': norm[0]=norm[1]=2; /* $2,2,1,1$ */
       break; case 'G': norm[1]=3; /* $ 1,3$ */
      }
    }
    for (l=0; last_root>level[l]; ++l)
    { level[l+1]=last_root; /* set beginning of a new level */
      for (i=level[l]; i<level[l+1]; ++i)
	
	{ index j,k; entry* alpha=posr[i];  mulvecmatelm(alpha,cartan,alpha_wt,r,r);
	    /* get values $\<\alpha,\alpha_j>$ */
	  for (j=0; j<r; ++j) /* try all fundamental roots */
	  { entry new_norm; 
	    
	    { if (alpha_wt[j]<0) /* then $\alpha+\alpha_j$ is a root; find its norm */
	        if (norm[j]==norm[i]) new_norm=norm[j]; /* |alpha_wt[j]==-1| */
	        else new_norm=1; /* regardless of |alpha_wt[j]| */
	      else if (norm[i]>1 || norm[j]>1) continue; /* both roots must be short now */
	      else if (strchr("ADE",g->lietype)!=NULL) continue;
	        /* but long roots must exist */
	      else if (alpha_wt[j]>0)
	        if (g->lietype!='G'||alpha_wt[j]!=1) continue;  else new_norm=3;
	        /* $[2,1]\to[3,1]$ for $G_2$ */
	      else if (alpha[j]==0) continue;
	        /* $\alpha-\alpha_j$ should not have a negative entry */
	      else
	      { 
	        { --alpha[j]; 
	          for (k=level[l-1]; k<level[l]; ++k) 
	            if (eqrow(posr[k],alpha,r)) break;
	          ++alpha[j]; 
	          if (k==level[l]) continue;
	        }
	      new_norm=2; }
	    }
	    ++alpha[j]; /* temporarily set $\alpha\K\alpha+\alpha_j$ */
	    for (k=level[l+1]; k<last_root; ++k)
	      if (eqrow(posr[k],alpha,r)) break;
	      /* if already present, don't add it */
	    if (k==last_root)
	      { norm[last_root]=new_norm; copyrow(alpha,posr[last_root++],r); }
	    --alpha[j]; /* restore |alpha| */
	  }
	}
    }
    freearr(alpha_wt); return g->roots;
  }
}

matrix* Posroots(object grp)
{ if (type_of(grp)==SIMPGRP) return simp_proots(&grp->s);
  if (simpgroup(grp)) return simp_proots(Liecomp(grp,0));
  { index i,j,t1=0,t2=0;
    matrix* result=mat_null(Numproots(grp),Ssrank(grp));
    entry** m=result->elm;
    for (i=0; i<grp->g.ncomp; ++i)
    { matrix* posr=simp_proots(Liecomp(grp,i));
      index r=Liecomp(grp,i)->lierank;
      for (j=0; j<posr->nrows; ++j) copyrow(posr->elm[j],&m[t1+j][t2],r);
      t1+=posr->nrows; t2+=r;
    }
    return result;
  }
}

vector* Highroot(simpgrp* g)
{ matrix* posr=simp_proots(g); index r=g->lierank; vector* high=mkvector(r);
  copyrow(posr->elm[posr->nrows-1],high->compon,r); return high;
}

vector* Simproot_norms(object grp)
{ if (type_of(grp)==SIMPGRP)
    { simp_proots(&grp->s); return grp->s.root_norm; }
  { index i; for (i=0; i<grp->g.ncomp; ++i) simp_proots(Liecomp(grp,i)); }
  if (grp->g.ncomp==1) return Liecomp(grp,0)->root_norm;
  { index i,t=0; vector* result=mkvector(Ssrank(grp));
    for (i=0; i<grp->g.ncomp; ++i)
    { simpgrp* g=Liecomp(grp,i); index r=g->lierank;
      copyrow(g->root_norm->compon,&result->compon[t],r); t+=r;
    }
    return result;
  }
}

static void set_simp_adjoint(entry* dst,simpgrp* g)
{ index r=g->lierank; vector* high=Highroot(g);
  mulvecmatelm(high->compon,g->cartan->elm,dst,r,r); freemem(high);
}

poly* Adjoint(object grp)
{ index i,j,r=Lierank(grp)
  ,n=type_of(grp)==SIMPGRP ? 1: grp->g.ncomp+(grp->g.toraldim!=0);
  poly* adj= mkpoly(n,r);
  for (i=0; i<n; ++i)
  { adj->coef[i]=one; for (j=0; j<r; ++j) adj->elm[i][j]=0; }
  if (type_of(grp)==SIMPGRP) set_simp_adjoint(adj->elm[0],&grp->s);
  else
  { index offs=0; simpgrp* g;
    for (i=0; i<grp->g.ncomp; offs+=g->lierank,++i)
      set_simp_adjoint(&adj->elm[i][offs],g=Liecomp(grp,i));
    if (grp->g.toraldim!=0)
    { adj->coef[i]=entry2bigint(grp->g.toraldim);
      setshared(adj->coef[i]);
    }
  }
  return adj;
}

entry Dimgrp(object grp)
{ return Lierank(grp) + 2*Numproots(grp); }

matrix* Center(object grp)
{ index i,j,R=Lierank(grp),n_gen;
  
  for (n_gen=grp->g.toraldim,i=0; i<grp->g.ncomp; ++i)
  { simpgrp* g=Liecomp(grp,i);
    if (simp_detcart(g)>1) n_gen+=1+(g->lietype=='D' && g->lierank%2==0);
  }
  { matrix* res=mat_null(n_gen,R+1); entry** m=res->elm; index k=0,s=0;
    for (j=0; j<grp->g.ncomp; ++j)
    { simpgrp* g=Liecomp(grp,j); index n=g->lierank; entry d=simp_detcart(g);
      if (d>1)
      { 
        switch (g->lietype)
        {      case 'A':  for (i=0; i<n; ++i) m[k][s+i]=i+1;
        	/* $[1,2,3,\ldots,n]$; $d=n+1$ */ 
        break; case 'B': m[k][s+n-1]=1; /* $[0,0,\ldots,0,1]$; $d=2$ */ 
        break; case 'C':  for (i=0; i<n; i+=2) m[k][s+i]=1;
        	/* $[1,0,1,0,\ldots]$; $d=2$ */ 
        break; case 'D': 
                      { m[k][s+n-2]=m[k][s+n-1]=1;
                        if (n%2==1)  for (i=0; i<n; i+=2) m[k][s+i]+=2;
                          /* $[2,0,2,\ldots,2,1,3]$; $d=4$ */
                        else
                        { d=2; m[k++][R]=d; /* $[0,0,\ldots,0,1,1]$; $d=2$ */
                          for (i=0; i<n; i+=2) m[k][s+i]=1; /* $[1,0,1,\ldots,1,0]$; $d=2$ */
                        }
                      }
         
        break; case 'E':
          if (n==7)
            { m[k][s+1]=m[k][s+4]=m[k][s+6]=1; } /* $[0,1,0,0,1,0,1]$; $d=2$ */
          else { m[k][s]=m[k][s+4]=1; m[k][s+2]=m[k][s+5]=2; }
             /* $[1,0,2,0,1,2]$; $d=3$ */
        }
	m[k++][R]=d; /* insert denominator for last generator, and advance */
      }
      s+=n; /* advance offset into semisimple elements */
    }
    
    for (i=0; i<grp->g.toraldim; ++i) m[k++][s+i]=1;
    assert(k==n_gen); return res;
  }
}

index find_root(entry* alpha, entry level, simpgrp* g)
{ index i,r=g->lierank; matrix* posr=simp_proots(g);
  for (i=g->level->compon[level-1]; i<g->level->compon[level]; ++i)
    if (eqrow(alpha,posr->elm[i],r)) return i;
  return -1; /* not found */
}

local boolean simp_isroot(entry* alpha, simpgrp* g)
{ index i,r=g->lierank; entry level=0; boolean neg,result=false;
  for(i=0; i<r; ++i) level+=alpha[i]; /* compute level of |alpha| */
  neg=level<0; /* if |neg| holds, |alpha| can only be a negative root */
  if (neg) { level= -level; for(i=0; i<r; ++i) alpha[i]= -alpha[i]; }
  result=find_root(alpha,level,g)>=0;
  if (neg)  for(i=0; i<r; ++i) alpha[i]= -alpha[i]; /* restore |alpha| */
  return result;
}

boolean isroot(entry* alpha)
{ index n_parts=0, i,j;
  if (type_of(grp)==SIMPGRP) return simp_isroot(alpha,&grp->s);
  if (grp->g.ncomp==1) return simp_isroot(alpha,Liecomp(grp,0));
  for (i=0; i<grp->g.ncomp; ++i)
  { simpgrp* g=Liecomp(grp,i); index r=g->lierank;
    for (j=0; j<r; ++j) if (alpha[j]!=0)
      if (n_parts>0 || !simp_isroot(alpha,g)) return false; 
      else { ++n_parts; break; }
    alpha+=r;
  }
  return n_parts==1; /* |alpha| is root if supported on 1 simple component */
}

void checkroot(entry* alpha)
{ if (!isroot(alpha))
  { printarr(alpha,Ssrank(grp)); error (" is not a root.\n"); }
}

boolean isposroot(entry* alpha)
{ index i,s=Ssrank(grp); 
  for (i=0; i<s; ++i)  if (alpha[i]!=0) return alpha[i]>0;
  assert(false); return false; /* to avoid compiler warnings */
}