1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
#include "lie.h"
#define local static
#define backup(i) (i=(i<=2 ? 0 : i-2))
#define Bh(x,y) (copyrow(x,v,s),copyrow(y,w,s),Bruhat(v,w))
#define P(x,y,e,d) (copyrow(x,v,s),copyrow(y,w,s),KL(v,w,e,d,s))
entry simp_inprod(entry* x,entry * y,simpgrp* g)
{ index i,j, r=g->lierank;
entry* norm=(simp_proots(g),g->root_norm->compon);
entry** cartan=g->cartan->elm; entry result=0;
for (j=0; j<r; ++j)
{ entry s=0; for (i=0; i<r; ++i) s += x[i] * cartan[i][j];
result += s * norm[j]*y[j];
}
return result;
}
entry Inprod(entry* x,entry * y)
{ if (type_of(grp)==SIMPGRP) return simp_inprod(x,y,&grp->s);
{ index i,t=0,result=0;
for (i=0; i<grp->g.ncomp; ++i)
{ simpgrp* g=Liecomp(grp,i);
result+=simp_inprod(&x[t],&y[t],g); t+=g->lierank;
}
return result;
}
}
entry simp_norm(entry* alpha, simpgrp* g)
{ index i,r=g->lierank; entry level=0,result; boolean neg;
for (i=0; i<r; ++i) level+=alpha[i]; /* compute level of |alpha| */
neg=level<0;
if (neg) { level= -level; for(i=0; i<r; ++i) alpha[i]= -alpha[i]; }
i=find_root(alpha,level,g); assert(i>=0); result=g->root_norm->compon[i];
if (neg) for(i=0; i<r; ++i) alpha[i]= -alpha[i]; /* restore |alpha| */
return result;
}
entry Norm(entry* alpha)
{ if (type_of(grp)==SIMPGRP) return simp_norm(alpha,&grp->s);
if (grp->g.ncomp==1) return simp_norm(alpha,Liecomp(grp,0));
{ index i,j,t=0;
for (i=0; i<grp->g.ncomp; ++i)
{ simpgrp* g=Liecomp(grp,i); index r=g->lierank;
for (j=0; j<r; ++j)
if (alpha[t+j]!=0) return simp_norm(&alpha[t],g);
t+=r;
}
assert(false); return 0; /* zero vector is not a root */
}
}
entry Cart_inprod(entry* x, entry* alpha)
{ return Inprod(x,alpha)/Norm(alpha); }
local matrix* simp_refl(entry* alpha,simpgrp* g,matrix* m, index offset)
{ index i,r=g->lierank; entry* row=mkintarray(2*r),* col=&row[r];
{ index norm_alpha=simp_norm(alpha,g); entry* norm=g->root_norm->compon;
mulvecmatelm(alpha,g->cartan->elm,row,r,r); /* |alpha| on weight basis */
copyrow(alpha,col,r);
for (i=0; i<r; ++i) col[i]=(col[i]*norm[i])/norm_alpha;
/* $\rf\alpha$ on coroot basis */
}
for (i=0; i<r; ++i) add_xrow_to(&m->elm[offset+i][offset],-col[i],row,r);
freearr(row); return m;
}
matrix* Reflection(entry* alpha)
{ index i,j,t=0; matrix* R=mat_id(Lierank(grp));
if (type_of(grp)==SIMPGRP) return simp_refl(alpha,&grp->s,R,0);
if (grp->g.ncomp==1) return simp_refl(alpha,Liecomp(grp,0),R,0);
for (i=0; i<grp->g.ncomp; ++i)
{ simpgrp* g=Liecomp(grp,i); index r=g->lierank;
for (j=0; j<r; ++j)
if (alpha[t+j]!=0) return simp_refl(&alpha[t],Liecomp(grp,i),R,t);
t+=r;
}
assert(false); return R; /* zero vector is not a root */
}
index simp_make_dominant(entry* lambda, simpgrp* g)
{ index i=0,l=0, r=g->lierank;
do
{ while (lambda[i]>=0) if (++i==r) return l;
/* find first negative entry */
simp_w_refl(lambda,i,g); ++l;
backup(i); /* reflect and count, then back up */
} while(true);
}
index make_dominant(entry* lambda)
{ index i=0,l=0; index s=Ssrank(grp); /* do not affect the toral part */
if (s==0) return 0; /* this trivial case must be taken out */
do
{ while (lambda[i]>=0) if (++i==s) return l;
w_refl(lambda,i); ++l; backup(i);
} while(true);
}
local index dom_length(entry* lambda)
{ index l,s=Ssrank(grp); entry* x=mkintarray(s); copyrow(lambda,x,s);
l=make_dominant(x); freearr(x); return l;
}
vector* Dominant(vector* lambda)
{ vector* result=copyvector(lambda);
make_dominant(result->compon); return result;
}
index Length(vector* w)
{ index i,s=Ssrank(grp),l=0; entry* x=mkintarray(s),wi;
for (i=0; i<s; ++i) x[i]=1; /* |x=rho| */
for (i=0; i<w->ncomp; ++i)
if ((wi=w->compon[i]-1)>=0)
{ if (x[wi]>0) ++l; else --l; w_refl(x,wi); }
freearr(x); return l;
}
vector* Wwordv(entry* lambda, index l)
{ index i=0,j=0,s=Ssrank(grp); entry* x=mkintarray(s);
vector* result=mkvector(l>=0 ? l : dom_length(lambda));
copyrow(lambda,x,s); if (s==0) { freearr(x); return result; }
do
{ while (x[i]>=0) if (++i==s) { freearr(x); return result; }
w_refl(x,i); result->compon[j++]= i+1; backup(i);
} while(true);
}
vector* Wwordm(matrix* m)
{ index i,l=0,s=Ssrank(grp);
entry* x=mkintarray(2*s),* y=&x[s];
vector* result;
for (i=0; i<s; ++i) y[i]=1; /* |y=rho| */
mulvecmatelm(y,m->elm,x,s,s); /* |x=rho*@t$m\v_{s\times s}$@>| */
i=0;
if (s>0) do
{ while (x[i]>=0) if (++i==s) goto finish;
w_refl(x,i); w_refl(y,i); ++l;
backup(i);
} while(true);
finish: result=Wwordv(y,l); freearr(x);
{ matrix* check=Weyl_mat(result); index r=Lierank(grp);
for (i=0; i<r; ++i) if (!eqrow(m->elm[i],check->elm[i],r))
error("Matrix does not correspond to a Weyl group element.\n");
freemem(check);
}
return result;
}
vector* Canonical(vector* w)
{ index i,l=w->ncomp,s=Ssrank(grp),wi;
entry* x=mkintarray(s); vector* result;
for (i=0; i<s; ++i) x[i]=1; /* |x=rho| */
for (i=l-1; i>=0; --i) /* apply reverse of |w| to |x| */
if ((wi=w->compon[i]-1)>=0) { w_refl(x,wi); if (x[wi]>0) l-=2; }
else --l;
result=Wwordv(x,l); freearr(x); return result;
}
matrix* Canonicals(matrix* m)
{ index k,n=m->nrows,s=Ssrank(grp); matrix* result=mkmatrix(n,m->ncols);
entry* x=mkintarray(s);
for (k=0; k<n; ++k)
{ entry* w= m->elm[k]; index i,l=m->ncols,wi; vector* t;
for (i=0; i<s; ++i) x[i]=1;
for (i=l-1; i>=0; --i)
if ((wi=w[i]-1)<0) --l; else { if (x[wi]<0) l-=2; w_refl(x,wi); }
t=Wwordv(x,l); copyrow(t->compon,result->elm[k],l); freemem(t);
for (i=l; i<m->ncols; ++i) result->elm[k][i]=0; /* fill out with 0's */
}
freearr(x); return result;
}
matrix* Filter_dom_m(matrix* m)
{ index i,j,s=Ssrank(grp),count=0; entry* inx=mkintarray(m->nrows);
for (i=0; i<m->nrows; ++i) /* get indices of dominant rows into |inx| */
{ for (j=0; j<s; ++j) if (m->elm[i][j]<0) break;
if (j==s) inx[count++]=i;
}
{ index r=m->ncols; matrix* result=mkmatrix(count,r);
for (i=0; i<count; ++i) copyrow(m->elm[inx[i]],result->elm[i],r);
freearr(inx); return result;
}
}
poly* Filter_dom(poly* p)
{ index i,j,s=Ssrank(grp),count=0; entry* inx=mkintarray(p->nrows);
for (i=0; i<p->nrows; ++i) /* get indices of dominant rows into |inx| */
{ for (j=0; j<s; ++j) if (p->elm[i][j]<0) break;
if (j==s) inx[count++]=i;
}
if (count==0) { freearr(inx); return poly_null(p->ncols); }
{ index r=p->ncols; poly* result=mkpoly(count,r);
for (i=0; i<count; ++i)
{ copyrow(p->elm[inx[i]],result->elm[i],r);
result->coef[i]=p->coef[inx[i]]; setshared(result->coef[i]);
}
freearr(inx); return result;
}
}
local entry* fix_vec (vector* I, index s)
{ index i; entry* x=mkintarray(s);
for (i=0; i<s; i++) x[i]=1; /* initialise to positive entries */
for (i=0; i<I->ncomp; i++)
{ entry e=I->compon[i];
if (e<=0 || e>s) error("Reflection %ld is out of range.\n",(long)e);
x[e-1]=0; /* now reflection $r_e$ stabilises |x| */
}
return x;
}
vector* L_red(vector* L, entry* w, index lw)
{ index i,s=Ssrank(grp),l=lw;
/* current length of word; decreases during reduction */
entry* x=fix_vec(L,s),* y=mkintarray(s); /* current vector and temporary */
for (i=0; i<lw; i++)
{ entry wi=w[i]-1; /* internally, reflections are numbered $0,\ldots,s-1$ */
if (w[i]==0) --l; /* ignore zero entry */
else if (x[wi]==0) { w[i]=0; --l; } /* |wi| stabilises |x|, delete it */
else if (w_refl(x,wi),x[wi]>0)
/* act on~$x$ with $w_i$; test if length decreased */
{ index j=i; copyrow(x,y,s); /* make a temporary copy of~|x| */
do
if (w[--j]!=0)
if (y[w[j]-1]<0) w_refl(y,w[j]-1); else break;
while (true);
w[j]=w[i]=0; l-=2; /* cancel reflections by exchange condition */
}
}
freearr(x); freearr(y);
{ vector* result=mkvector(l); entry* res=result->compon;
for (i=0; i<lw; i++) if (w[i]!=0) *res++=w[i];
return result;
}
}
vector* Reduce (vector* v)
{ vector* empty=mkvector(0),* result; index lw=v->ncomp;
entry* w=mkintarray(lw);
copyrow(v->compon,w,lw); result=L_red(empty,w,lw);
freemem(empty); freearr(w); return result;
}
vector* LR_red(vector* L,entry* w,index lw,vector* R)
{
{ vector* t=L_red(L,w,lw);
lw=t->ncomp; copyrow(t->compon,w,lw); freemem(t);
}
{ index i,l=lw; entry* x=fix_vec(R,Ssrank(grp));
for (i=lw-1; i>=0; i--) /* see if |wi| can be eliminated */
{ entry wi=w[i]-1;
if (x[wi]==0) { w[i]=0; --l; } /* |wi| stabilises |x|, delete it */
else w_refl(x,wi); /* we have |x[wi]>0|; the length increases */
}
freearr(x);
{ vector* result=mkvector(l); entry* res=result->compon;
for (i=0; i<lw; i++) if (w[i]!=0) *res++=w[i];
return result;
}
}
}
local boolean Bruhat(entry* x,entry* y) /* modifies arguments */
{ index i,s=Ssrank(grp), d; entry* delta=mkintarray(s);
{ matrix* ic=Icartan(); index dc=Detcartan(); entry* t=mkintarray(s);
subrow(x,y,t,s); mulvecmatelm(t,ic->elm,delta,s,s);
freemem(ic); freearr(t);
for (d=0, i=0; i<s; ++i)
if ((delta[i]/=dc)<0) { freearr(delta); return false; }
else d+= delta[i];
}
for (i=0; d>0; backup(i))
{ while (y[i]>=0) ++i; /* find first |y[i]<0|; it exists */
{ w_refl(y,i); delta[i]-=y[i]; d-=y[i];
if (x[i]<0) { w_refl(x,i); delta[i]+=x[i]; d+=x[i]; }
}
if (delta[i]<0) { freearr(delta); return false; }
/* because we no longer have $y\prec x$ */
}
freearr(delta);
return true; /* |delta==0|, so |x| and |y| have become equal */
}
boolean Bh_leq(vector* v,vector* w)
{ index i,s=Ssrank(grp); entry* x=mkintarray(2*s),* y=&x[s]; boolean result;
for (i=0; i<s; ++i) x[i]=y[i]=1;
Waction(x,v); Waction(y,w); /* $x\K\rho\cdot v$ and $y\K\rho\cdot w$ */
result = Bruhat(x,y); freearr(x); return result;
}
matrix* Bh_desc(entry* w, index l) /* |w| is reduced of length |l| */
{ entry* inx; index s=Ssrank(grp),n_desc=0;
if (l==0) return mkmatrix(0,0); /* avoid attempting a $0\times-1$ matrix */
{ index i,j; entry* x=(inx=mkintarray(l+s),&inx[l]);
for (i=0; i<l; ++i)
{ for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
for (j=0; j<l; ++j) if (j!=i)
{ entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
if (j==l) inx[n_desc++]=i; /* if reduced, record |i| */
}
}
{ matrix* result=mkmatrix(n_desc,l-1); index i,j;
for (i=0; i<n_desc; ++i)
{ entry* row= result->elm[i];
for (j=0; j<l; ++j) if (j!=inx[i]) *row++=w[j];
}
freearr(inx); return result;
}
}
matrix* Bh_desc_rel(entry* w, index l, entry* lwb)
{ entry* inx; index s=Ssrank(grp),n_desc=0;
if (l==0) return mkmatrix(0,0); /* avoid attempting a $0\times-1$ matrix */
{ index i,j; entry* x=(inx=mkintarray(l+2*s),&inx[l]), *y=&x[s];
for (i=0; i<l; ++i)
{ for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
for (j=0; j<l; ++j) if (j!=i)
{ entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
if (j==l && (copyrow(lwb,y,s),Bruhat(y,x))) inx[n_desc++]=i;
}
}
{ matrix* result=mkmatrix(n_desc,l-1); index i,j;
for (i=0; i<n_desc; ++i)
{ entry* row= result->elm[i];
for (j=0; j<l; ++j) if (j!=inx[i]) *row++=w[j];
}
freearr(inx); return result;
}
}
local void Bh_descs(matrix** m, entry* lwb, index s)
{ vector* word=Wwordv((*m)->elm[0],-1); entry* w=word->compon;
index i,j,k,l=word->ncomp,n_desc=0;
matrix* descs=mkmatrix(((*m)->nrows)*l+1,s);
entry* x=mkintarray(2*s),* y=&x[s]; /* working arrays */
for (k=0; ; w=(word=Wwordv((*m)->elm[k],l))->compon)
{
for (i=0; i<l; ++i)
{ for (j=0; j<s; ++j) x[j]=1; /* |x=rho| */
for (j=l-1; j>=0; --j) if (j!=i)
{ entry wj=w[j]-1; if (x[wj]>0) w_refl(x,wj); else break; }
if (j<0 && (copyrow(lwb,y,s),copyrow(x,descs->elm[n_desc],s),Bruhat(y,x)))
++n_desc;
}
freemem(word);
if (++k==(*m)->nrows) break;
}
descs->nrows=n_desc;
freearr(x); freemem(*m); *m=Unique(descs,cmpfn);
}
static poly* q,* q_1;
/* |q| respectively |q-1|, when initialised */
void make_q (void)
{ (q=mkpoly(1,1))->elm[0][0]=1; *q->coef=one; setshared(q);
/* $X^{[1]}$ means |q| */
q_1= Add_pol_pol(q,poly_one(1),true); setshared(q_1);
/* $X^{[1]}-X^{[0]}$ means |q-1| */
}
void clear_q (void)
{ clrshared(q); freepol(q); clrshared(q_1); freepol(q_1); }
local poly* R(entry* x, entry* y, index k, index d, index s)
/* modifies |x| and |y| */
{ index i; entry* v=mkintarray(2*s),* w=&v[s];
poly* sum=poly_null(1);
while (d>0) /* |d==length(y)-length(x)| */
{ if (!Bh(x,y)) { freearr(v);return sum;}
for (i=0; ; backup(i))
{ do { if (x[i]<0 && y[i]<0) break;} while (++i<s);
if (i==s) break;
w_refl(x,i); w_refl(y,i);
}
for (i=0; y[i]>=0; ++i) {}
{ w_refl(y,i); copyrow(x,v,s); copyrow(y,w,s);
sum=Add_pol_pol(sum,Mul_pol_pol(q_1,R(v,w,k,d-1,s)),false);
}
w_refl(x,i); d-=2; ++k;
/* repeat with $x\K xs_i$, $y\K ys_i$, adjusted~|d|,
and increased~|k| */
}
freearr(v);
if (d==0 && eqrow(x,y,s)) /* if |x==y|, add final $q^k$ */
{ poly* q_k=copypoly(q); q_k->elm[0][0]=k;
sum= Add_pol_pol(sum,q_k,false);
}
return sum;
}
poly* Rpoly(vector* x,vector* y)
{ index i,s=Ssrank(grp); entry* v=mkintarray(2*s),* w=&v[s]; poly* result;
for (i=0; i<s; ++i) v[i]=w[i]=1;
Waction(v,x); Waction(w,y);
result=R(v,w,0,dom_length(w)-dom_length(v),s); freearr(v); return result;
}
local poly* KL(entry* x, entry* y, index e, index d, index s)
{ index i; entry* v=mkintarray(2*s),* w=&v[s]; poly* result;
if (d<0 || !Bh(x,y)) { freearr(v); return poly_null(1); }
if (d<3) triv_result: /* return $q^e$ when |l(y)-l(x)<3| */
{ poly* qe=mkpoly(1,1); qe->coef[0]=one; qe->elm[0][0]=e;
freearr(v); return qe;
}
do
{ for (i=0; ; backup(i))
{ do { if (x[i]>0 && y[i]<0) break; } while (++i<s);
if (i==s) break;
w_refl(x,i); if(--d<3) goto triv_result;
}
for (i=0; i<s; ++i)
if (y[i]<0) /* then also |x[i]<0|, because of the loop above */
if (w_refl(y,i),Bh(x,y)) w_refl(y,i); else { w_refl(x,i); break; }
} while (i<s);
for (i=0; y[i]>=0; ++i) {}
/* find $i$ with $ys_i<y$; it exists since |y!=e| */
w_refl(y,i); --d; /* put $y\K ys_i$, maintain |d==l(y)-l(x)| */
{ matrix* level=mkmatrix(1,s); index j,c=1; /* |c==(l(y)-l(z)+1)/2| */
{ poly* Pxy=P(x,y,e+1,d);
w_refl(x,i); result=Add_pol_pol(P(x,y,e,d+1),Pxy,false); w_refl(x,i);
}
copyrow(y,level->elm[0],s); Bh_descs(&level,x,s);
--d; /* |d==l(z)-l(x)| */
do
{ for (j=0; j<level->nrows; ++j)
{ entry* z=level->elm[j];
if (z[i]<0)
{ poly* Pzy=P(z,y,0,2*c-1);
if (Pzy->nrows!=0 && Pzy->elm[0][0]==c-1 && Pzy->coef[0]->size!=0)
/* |mu(z,y)!=0| */
{ bigint* mu=sub(null,Pzy->coef[0]); freepol(Pzy);
result=Addmul_pol_pol_bin(result,P(x,z,e+c,d),mu);
}
}
}
if (d<2) { freemem(level); break;} /* we cannot go down 2 more levels */
Bh_descs(&level,x,s); Bh_descs(&level,x,s); d-=2; ++c;
} while(true);
}
freearr(v); return result;
}
poly* KLpoly(vector* x,vector* y)
{ index i,s=Ssrank(grp); entry* v=mkintarray(2*s),* w=v+s; poly* result;
for (i=0; i<s; ++i) v[i]=w[i]=1;
Waction(v,x); Waction(w,y);
result=KL(v,w,0,dom_length(w)-dom_length(v),s); freearr(v); return result;
}
|