1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
#include "lie.h"
#ifdef __STDC__
static void error_nvars(index n1,index n2);
#endif
static void error_nvars(index n1,index n2)
{
Printf("Number of variables in polynomials unequal\n");
error("( %ld <-> %ld variables).\n",(long)n1,(long)n2);
}
poly* Pol_from_vec(v)
vector *v;
{
poly *result = mkpoly(1,v->ncomp);
copyrow(v->compon, result->elm[0], v->ncomp);
result->coef[0] = one;
freemem(v);
return result;
}
entry Degree_pol(poly* p)
{ entry ncols = p->ncols;
entry nrows = p->nrows;
entry max=MinEntry; /* will be overwritten for i==0 */
entry i,j;
if (p->coef[0]->size==0) return 0; /* degree(0X[0,..,0]) set to 0 */
for (i = 0 ; i < nrows; ++i)
{ entry sum=0; entry* row = p->elm[i];
for (j=0 ; j<ncols; ++j) sum += row[j];
if (sum>max) max = sum;
}
return max;
}
/*************************************************************
* Check that a polynomial has row length r, and normalise *
*************************************************************/
poly* check_pol(p,r) poly* p; entry r;
{ entry d = p->ncols;
if (d != r)
error("Number of variables in polynomial unequal Lie rank.\n");
if (!issorted(p)) return Reduce_pol(p);
return p;
}
/* The polynomial arithmetic routines will guarantee that no improper
0 coefficients will remain, even if they were present in the arguments.
*/
poly* Add_pol_pol(a,b,neg_b) poly* a,* b; boolean neg_b;
{ return Addmul_pol_pol_bin(a,b, neg_b ? minus_one : one); }
poly* Mul_bin_pol(a,b) bigint* a; poly* b; /* modifies b unless shared */
{ entry nrows = b->nrows; entry i; poly* result = private_pol(b);
setshared(a);
for (i=0; i<nrows; i++)
{ result->coef[i]=mult(a,b->coef[i]); setshared(result->coef[i]); }
clrshared(a);
#ifndef argumentsave
freemem(a); /* don't freepol(b) since either isshared(b) or b==result */
#endif
return result;
}
poly* Addmul_pol_pol_bin(a,b,c) poly* a,* b; bigint* c; /* a+c*b */
{ index i,j,k; entry len=a->ncols; cmp_tp cmp; poly* result;
if (len != b->ncols) error_nvars(len,b->ncols);
if (!c->size) return a;
if (issorted(a) || issorted(b)) /* then make use of this sorting: */
{ cmpfn_tp compare=set_ordering(cmpfn,len,defaultgrp);
if (!issorted(a)) a=Reduce_pol(a); else
if (!issorted(b)) b=Reduce_pol(b); /* now both are sorted */
if (a->nrows==1 && !a->coef[0]->size) return Mul_bin_pol(c,b);
if (b->nrows==1 && !b->coef[0]->size) return a;
result=mkpoly(a->nrows+b->nrows,len); i=j=k=0; setshared(c);
while(j<b->nrows)
{ while (i<a->nrows && (cmp=compare(a->elm[i],b->elm[j],len))>0)
if (!a->coef[i]->size) i++; /* skip term with 0 coefficient */ else
{ result->coef[k]=a->coef[i]; setshared(result->coef[k]);
copyrow(a->elm[i++],result->elm[k++],len);
}
if (i<a->nrows && cmp==0) /* add compatible terms */
{ result->coef[k]= c==one ? add(a->coef[i],b->coef[j])
: c==minus_one ? sub(a->coef[i],b->coef[j])
: add(a->coef[i],mult(c,b->coef[j]));
if (!result->coef[k]->size) /* if terms cancel */
{ freemem(result->coef[k]); i++; j++; }
else
{ setshared(result->coef[k]);
copyrow(a->elm[i++],result->elm[k++],len); j++;
}
}
else /* i==a->nrows || compare(a->elm[i],b->elm[j],len)<0; */
if (!b->coef[j]->size) j++; else
{ result->coef[k]= c==one ? b->coef[j]
: c==minus_one ? sub(null,b->coef[j])
: mult(c,b->coef[j]);
setshared(result->coef[k]);
copyrow(b->elm[j++],result->elm[k++],len);
}
} /* Now all terms of b have been included, but a may have some left */
while (i<a->nrows)
if (!a->coef[i]->size) i++; else
{ result->coef[k]=a->coef[i]; setshared(result->coef[k]);
copyrow(a->elm[i++],result->elm[k++],len);
}
clrshared(c);
#ifndef argumentsave
freepol(a); freepol(b); freemem(c);
#endif
if (k) { result->nrows=k; setsorted(result); return result; }
freemem(result); return poly_null(len);
} /* end of sorted case; if unsorted simply append polynomials and reduce */
setshared(c); result=mkpoly(a->nrows+b->nrows,len);
for (i=0; i<a->nrows; i++)
{ result->coef[i]=a->coef[i]; setshared(result->coef[i]);
copyrow(a->elm[i],result->elm[i],len);
}
for (j=0; j<b->nrows; j++,i++)
{ result->coef[i]= c==one ? b->coef[j] : mult(b->coef[j],c);
setshared(result->coef[i]);
copyrow(b->elm[j],result->elm[i],len);
}
clrshared(c);
#ifndef argumentsave
freepol(a); freepol(b); freemem(c);
#endif
return Reduce_pol(result);
}
poly* Div_pol_bin(a,b) poly* a; bigint* b;
{
entry nrows = a->nrows;
entry i;
poly *result = isshared(a)?
copypoly(a) : (setshared(a),a);
setshared(b);
for (i = 0; i < nrows; i++) {
result->coef[i] = quotient(a->coef[i],b);
setshared(result->coef[i]);
}
clrshared(b);
#ifndef argumentsave
freepol(a);freemem(b);
#endif
return result;
}
poly* Mod_pol_bin(a,b) poly* a; bigint* b;
{
entry nrows = a->nrows;
entry i;
poly *result = isshared(a)?
copypoly(a) : (setshared(a),a);
setshared(b);
for (i = 0; i < nrows; i++) {
result->coef[i] = mod(a->coef[i],b);
setshared(result->coef[i]);
}
clrshared(b);
#ifndef argumentsave
freepol(a);freemem(b);
#endif
return result;
}
poly
*Mul_pol_int(b,a)
intcel *a;
poly *b;
{
entry nrows = b->nrows, ncols = b->ncols;
entry d = a->intval;
entry i,j;
poly *result = isshared(b)?
copypoly(b) : (setshared(b),b);
for (i = 0; i < nrows; i++)
for (j = 0; j < ncols; j++) {
result->elm[i][j] = b->elm[i][j] * d;
}
#ifndef argumentsave
freepol(b);freemem(a);
#endif
return result;
}
poly* Div_pol_vec(b,a) poly* b; vector* a;
{ index nrows = b->nrows, ncols = b->ncols;
entry i,j;
poly* result = private_pol(b);
if (ncols != a->ncomp)
error("Size of vector should equal number of indeterminates.\n");
for (j=0; j<ncols; j++)
{ entry d=a->compon[j]; if (d==0) error("Division by zero.\n");
for (i=0; i<nrows; i++) result->elm[i][j]/=d;
}
return Reduce_pol(result);
}
poly* Mod_pol_vec(b,a) poly *b; vector *a;
{ index nrows = b->nrows, ncols = b->ncols;
entry i,j;
poly* result = private_pol(b);
if (ncols != a->ncomp)
error("Size of vector should equal number of indeterminates.\n");
for (j=0; j<ncols; j++)
{ entry d=labs(a->compon[j]); if (d==0) continue; /* mod 0 is noop */
for (i=0; i<nrows; i++)
{ if ((result->elm[i][j]%=d)<0) result->elm[i][j]+=d; }
}
return Reduce_pol(result);
}
poly *Disjunct_mul_pol_pol(p1, p2)
poly *p1, *p2;
/***************************************************************
* Product of polynomials.De sets of free variables of p1 and p2*
* are disjunct. *
***************************************************************/
{ index r1= p1->ncols, r2=p2->ncols, n1=p1->nrows,
n2=p2->nrows;
entry **e1=p1->elm, **e2=p2->elm, **a;
index i, j, s=0;
poly *ans;
a=(ans=mkpoly(n1*n2,r1+r2))->elm;
for(i=0;i<n1;i++)
for(j=0; j<n2; j++)
{ copyrow(e1[i],a[s],r1); copyrow(e2[j],a[s]+r1,r2);
ans->coef[s]= mult(p1->coef[i],p2->coef[j]);
setshared(ans->coef[s]);
s++;
}
#ifndef argumentsave
freepol(p1);
freepol(p2);
#endif
return(ans);
}
poly *Mul_pol_pol(p1,p2)
poly *p1, *p2;
{
index ncols1 = p1->ncols, ncols2 = p2->ncols,
nrows1 = p1->nrows, nrows2 = p2->nrows;
index nrows = nrows1 * nrows2;
poly *result, *garbage;
index i,j,k = 0,l;
/***************************************************************
* The wide polynomial is chosen p1 *
***************************************************************/
if (ncols1 != ncols2) error_nvars(ncols1,ncols2);
garbage = result = mkpoly(nrows, ncols1);
/***************************************************************
* Expand loop *
***************************************************************/
for (i=0; i < nrows1; i++) {
bigint *c = p1->coef[i];
for (j=0; j < nrows2; j++) {
entry *monom = result->elm[k], *monom2 = p2->elm[j];
copyrow(p1->elm[i],monom,ncols1);
for (l=0; l<ncols2;l++) monom[l] += monom2[l];
result->coef[k] = mult(c,p2->coef[j]);
setshared(result->coef[k]);
k++;
}
/*
result = Reduce_pol(result);
k = result->nrows;
if (result != garbage) error("System warning.\n");
*/
}
/***************************************************************
* Sort and reduce polynomial *
***************************************************************/
result = copypoly(Reduce_pol(result));
freemem(garbage);
/***************************************************************
* Freemem arguments *
***************************************************************/
#ifndef argumentsave
freepol(p1);
freepol(p2);
#endif
return result;
}
|