File: poster1.tex

package info (click to toggle)
lifelines 3.0.50-2
  • links: PTS
  • area: main
  • in suites: etch-m68k
  • size: 11,140 kB
  • ctags: 6,517
  • sloc: ansic: 57,468; xml: 8,014; sh: 4,255; makefile: 848; yacc: 601; perl: 170; sed: 16
file content (135 lines) | stat: -rw-r--r-- 4,686 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%% BEGIN poster1.tex
%%
%% Sample for poster.tex/poster.sty.
%% Run with LaTeX, with or without the NFSS.
%% You might have problems with missing fonts.
%%
%% See below if using A4 paper.

\documentstyle{article}

\input poster  % Input here in case poster.sty not installed.

\mag\magstep5  % Magnification of 1.2^5 (roughly 2.5)
               % Use "true" dimensions below for magnified values.

\begin{document}

%% Add  paperwidth=210mm,paperheight=297mm  if using A4 paper:

\begin{Poster}[vcenter=true,hcenter=true]
\setlength{\fboxsep}{.8truein}%
\setlength{\fboxrule}{.1truein}%
\fbox{\begin{minipage}{11.1truein}

\begin{center}
  \bf ON SOME \boldmath$\Pi$-HEDRAL SURFACES IN QUASI-QUASI SPACE
\end{center}
\begin{center}
  CLAUDE HOPPER, Omnius University
\end{center}

There is at present a school of mathematicians which holds that the
explosive growth of jargon within mathematics is a deplorable trend.  It
is our purpose in this note to continue the work of
Redheffer~\cite{redheffer} in showing how terminology itself can lead to
results of great elegance.

I first consolidate some results of Baker~\cite{baker} and
McLelland~\cite{mclelland}.  We define a class of connected snarfs as
follows: $S_\alpha=\Omega(\gamma_\beta)$.  Then if
$B=(\otimes,\rightarrow,\theta)$ is a Boolean left subideal, we have:
$$
\nabla S_\alpha=\int\int\int_{E(\Omega)}
B(\gamma_{\beta_0},\gamma_{\beta_0})\,d\sigma d\phi d\rho
-\frac{19}{51}\Omega.
$$
Rearranging, transposing, and collecting terms, we have:
$\Omega=\Omega_0$.

The significance of this is obvious, for if $\{S_\alpha\}$ be a class of
connected snarfs, our result shows that its union is an utterly
disjoint subset of a $\pi$-hedral surface in quasi-quasi space.

We next use a result of Spyrpt~\cite{spyrpt} to derive a property of
wild cells in door topologies.  Let $\xi$ be the null operator on a door
topology, $\Box$, which is a super-linear space.  Let $\{P_\gamma\}$ be
the collection of all nonvoid, closed, convex, bounded, compact,
circled, symmetric, connected, central, $Z$-directed, meager sets in
$\Box$.  Then $P=\cup P_\gamma$ is perfect.  Moreover, if $P\neq\phi$,
then $P$ is superb.

\smallskip
{\it Proof.}  The proof uses a lemma due to
Sriniswamiramanathan~\cite{srinis}.  This states that any unbounded
fantastic set it closed.  Hence we have
$$
\Rightarrow P\sim\xi(P_\gamma)-\textstyle\frac{1}{3}.
$$

After some manipulation we obtain
$$
\textstyle\frac{1}{3}=\frac{1}{3}
$$
I have reason to believe~\cite{russell} that this implies $P$ is perfect.
If $P\neq\phi$, $P$ is superb.  Moreover, if $\Box$ is a $T_2$ space, $P$
is simply superb.  This completes the proof.

Our final result is a generalization of a theorem of Tz, and
encompasses some comments on the work of Beaman~\cite{beaman} on the
Jolly function.

Let $\Omega$ be any $\pi$-hedral surface in a semi-quasi space.  Define
a nonnegative, nonnegatively homogeneous subadditive linear functional
$f$ on $X\supset\Omega$ such that $f$ violently suppresses $\Omega$.
Then $f$ is the Jolly function.

\smallskip
{\it Proof.}  Suppose $f$ is not the Jolly function.  Then
$\{\Lambda,\mbox{@},\xi\}\cap\{\Delta,\Omega,\Rightarrow\}$ is void.  Hence
$f$ is morbid.  This is a contradiction, of course.  Therefore, $f$ is
the Jolly function.  Moreover, if $\Omega$ is a circled husk, and
$\Delta$ is a pointed spear, then $f$ is uproarious.

\small
\begin{center}
\bf References
\end{center}
\def\thebibliography#1{%
  \list
 {\bf\arabic{enumi}.}{\settowidth\labelwidth{\bf #1.}\leftmargin\labelwidth
 \advance\leftmargin\labelsep
 \usecounter{enumi}}
 \def\newblock{\hskip .11em plus .33em minus .07em}
 \sloppy\clubpenalty4000\widowpenalty4000
 \sfcode`\.=1000\relax}
\begin{thebibliography}{9}
\bibitem{redheffer}
R. M. Redheffer, A real-life application of mathematical symbolism,
this {\it Magazine}, 38 (1965) 103--4.
\bibitem{baker}
J. A. Baker, Locally pulsating manifolds, East Overshoe Math. J., 19
(1962) 5280--1.
\bibitem{mclelland}
J. McLelland, De-ringed pistons in cylindric algebras,
Vereinigtermathematischerzeitung f\"ur Zilch, 10 (1962) 333--7.
\bibitem{spyrpt}
Mrowclaw Spyrpt, A matrix is a matrix is a matrix, Mat. Zburp., 91
(1959) 28--35.
\bibitem{srinis}
Rajagopalachari Sriniswamiramanathan, Some expansions on the Flausgloten
Theorem on locally congested lutches, J. Math. Soc., North Bombay, 13
(1964) 72--6.
\bibitem{russell}
A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge
University Press, 1925.
\bibitem{beaman}
J. Beaman, Morbidity of the Jolly function, Mathematica Absurdica, 117
(1965) 338--9.
\end{thebibliography}
\end{minipage}}%
\end{Poster}

\end{document}
%% END poster1.tex