1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/* ----------------------------------------------------------------------
This is the
██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗
██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝
██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗
██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║
███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║
╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝®
DEM simulation engine, released by
DCS Computing Gmbh, Linz, Austria
http://www.dcs-computing.com, office@dcs-computing.com
LIGGGHTS® is part of CFDEM®project:
http://www.liggghts.com | http://www.cfdem.com
Core developer and main author:
Christoph Kloss, christoph.kloss@dcs-computing.com
LIGGGHTS® is open-source, distributed under the terms of the GNU Public
License, version 2 or later. It is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
received a copy of the GNU General Public License along with LIGGGHTS®.
If not, see http://www.gnu.org/licenses . See also top-level README
and LICENSE files.
LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
the producer of the LIGGGHTS® software and the CFDEM®coupling software
See http://www.cfdem.com/terms-trademark-policy for details.
-------------------------------------------------------------------------
Contributing author and copyright for this file:
This file is from LAMMPS, but has been modified. Copyright for
modification:
Copyright 2012- DCS Computing GmbH, Linz
Copyright 2009-2012 JKU Linz
Copyright of original file:
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdlib.h>
#include <string.h>
#include "compute_stress_atom.h"
#include "atom.h"
#include "update.h"
#include "comm.h"
#include "force.h"
#include "pair.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "modify.h"
#include "fix.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputeStressAtom::ComputeStressAtom(LAMMPS *lmp, int &iarg, int narg, char **arg) :
Compute(lmp, iarg, narg, arg)
{
if (narg < iarg) error->all(FLERR,"Illegal compute stress/atom command");
peratom_flag = 1;
size_peratom_cols = 6;
pressatomflag = 1;
timeflag = 1;
comm_forward = 6;
comm_reverse = 6;
if (narg == iarg) {
keflag = 1;
pairflag = 1;
bondflag = angleflag = dihedralflag = improperflag = 1;
kspaceflag = 1;
fixflag = 1;
} else {
keflag = 0;
pairflag = 0;
bondflag = angleflag = dihedralflag = improperflag = 0;
kspaceflag = 0;
fixflag = 0;
while (iarg < narg) {
if (strcmp(arg[iarg],"ke") == 0) keflag = 1;
else if (strcmp(arg[iarg],"pair") == 0) pairflag = 1;
else if (strcmp(arg[iarg],"bond") == 0) bondflag = 1;
else if (strcmp(arg[iarg],"angle") == 0) angleflag = 1;
else if (strcmp(arg[iarg],"dihedral") == 0) dihedralflag = 1;
else if (strcmp(arg[iarg],"improper") == 0) improperflag = 1;
else if (strcmp(arg[iarg],"kspace") == 0) kspaceflag = 1;
else if (strcmp(arg[iarg],"fix") == 0) fixflag = 1;
else if (strcmp(arg[iarg],"virial") == 0) {
pairflag = 1;
bondflag = angleflag = dihedralflag = improperflag = 1;
kspaceflag = fixflag = 1;
} else error->all(FLERR,"Illegal compute stress/atom command");
iarg++;
}
}
nmax = 0;
stress = NULL;
}
/* ---------------------------------------------------------------------- */
ComputeStressAtom::~ComputeStressAtom()
{
memory->destroy(stress);
}
/* ---------------------------------------------------------------------- */
void ComputeStressAtom::compute_peratom()
{
int i,j;
double onemass;
invoked_peratom = update->ntimestep;
if (update->vflag_atom != invoked_peratom)
error->all(FLERR,"Per-atom virial was not tallied on needed timestep");
// grow local stress array if necessary
// needs to be atom->nmax in length
if (atom->nmax > nmax) {
memory->destroy(stress);
nmax = atom->nmax;
memory->create(stress,nmax,6,"stress/atom:stress");
array_atom = stress;
}
// npair includes ghosts if either newton flag is set
// b/c some bonds/dihedrals call pair::ev_tally with pairwise info
// nbond includes ghosts if newton_bond is set
// ntotal includes ghosts if either newton flag is set
// KSpace includes ghosts if tip4pflag is set
int nlocal = atom->nlocal;
int npair = nlocal;
int nbond = nlocal;
int ntotal = nlocal;
int nkspace = nlocal;
if (force->newton) npair += atom->nghost;
if (force->newton_bond) nbond += atom->nghost;
if (force->newton) ntotal += atom->nghost;
if (force->kspace && force->kspace->tip4pflag) nkspace += atom->nghost;
// clear local stress array
for (i = 0; i < ntotal; i++)
for (j = 0; j < 6; j++)
stress[i][j] = 0.0;
// add in per-atom contributions from each force
if (pairflag && force->pair) {
double **vatom = force->pair->vatom;
for (i = 0; i < npair; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
if (bondflag && force->bond) {
double **vatom = force->bond->vatom;
for (i = 0; i < nbond; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
if (angleflag && force->angle) {
double **vatom = force->angle->vatom;
for (i = 0; i < nbond; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
if (dihedralflag && force->dihedral) {
double **vatom = force->dihedral->vatom;
for (i = 0; i < nbond; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
if (improperflag && force->improper) {
double **vatom = force->improper->vatom;
for (i = 0; i < nbond; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
if (kspaceflag && force->kspace) {
double **vatom = force->kspace->vatom;
for (i = 0; i < nkspace; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
// add in per-atom contributions from relevant fixes
// skip if vatom = NULL
// possible during setup phase if fix has not initialized its vatom yet
// e.g. fix ave/spatial defined before fix shake,
// and fix ave/spatial uses a per-atom stress from this compute as input
if (fixflag) {
for (int ifix = 0; ifix < modify->nfix; ifix++)
if (modify->fix[ifix]->virial_flag) {
double **vatom = modify->fix[ifix]->vatom;
if (vatom)
for (i = 0; i < nlocal; i++)
for (j = 0; j < 6; j++)
stress[i][j] += vatom[i][j];
}
}
// communicate ghost virials between neighbor procs
if (force->newton || (force->kspace && force->kspace->tip4pflag))
comm->reverse_comm_compute(this);
// zero virial of atoms not in group
// only do this after comm since ghost contributions must be included
int *mask = atom->mask;
for (i = 0; i < nlocal; i++)
if (!(mask[i] & groupbit)) {
stress[i][0] = 0.0;
stress[i][1] = 0.0;
stress[i][2] = 0.0;
stress[i][3] = 0.0;
stress[i][4] = 0.0;
stress[i][5] = 0.0;
}
// include kinetic energy term for each atom in group
// mvv2e converts mv^2 to energy
if (keflag) {
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
double mvv2e = force->mvv2e;
if (rmass) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
onemass = mvv2e * rmass[i];
stress[i][0] += onemass*v[i][0]*v[i][0];
stress[i][1] += onemass*v[i][1]*v[i][1];
stress[i][2] += onemass*v[i][2]*v[i][2];
stress[i][3] += onemass*v[i][0]*v[i][1];
stress[i][4] += onemass*v[i][0]*v[i][2];
stress[i][5] += onemass*v[i][1]*v[i][2];
}
} else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
onemass = mvv2e * mass[type[i]];
stress[i][0] += onemass*v[i][0]*v[i][0];
stress[i][1] += onemass*v[i][1]*v[i][1];
stress[i][2] += onemass*v[i][2]*v[i][2];
stress[i][3] += onemass*v[i][0]*v[i][1];
stress[i][4] += onemass*v[i][0]*v[i][2];
stress[i][5] += onemass*v[i][1]*v[i][2];
}
}
}
// convert to stress*volume units = -pressure*volume
double nktv2p = -force->nktv2p;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
stress[i][0] *= nktv2p;
stress[i][1] *= nktv2p;
stress[i][2] *= nktv2p;
stress[i][3] *= nktv2p;
stress[i][4] *= nktv2p;
stress[i][5] *= nktv2p;
}
}
/* ---------------------------------------------------------------------- */
int ComputeStressAtom::pack_reverse_comm(int n, int first, double *buf)
{
int i,m,last;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
buf[m++] = stress[i][0];
buf[m++] = stress[i][1];
buf[m++] = stress[i][2];
buf[m++] = stress[i][3];
buf[m++] = stress[i][4];
buf[m++] = stress[i][5];
}
return 6;
}
/* ---------------------------------------------------------------------- */
void ComputeStressAtom::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,j,m;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
stress[j][0] += buf[m++];
stress[j][1] += buf[m++];
stress[j][2] += buf[m++];
stress[j][3] += buf[m++];
stress[j][4] += buf[m++];
stress[j][5] += buf[m++];
}
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
double ComputeStressAtom::memory_usage()
{
double bytes = nmax*6 * sizeof(double);
return bytes;
}
/* ---------------------------------------------------------------------- */
int ComputeStressAtom::pack_comm(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j;
//we dont need to account for pbc here
int m = 0;
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = stress[j][0];
buf[m++] = stress[j][1];
buf[m++] = stress[j][2];
buf[m++] = stress[j][3];
buf[m++] = stress[j][4];
buf[m++] = stress[j][5];
}
return 6;
}
/* ---------------------------------------------------------------------- */
void ComputeStressAtom::unpack_comm(int n, int first, double *buf)
{
int i,m,last;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
stress[i][0] = buf[m++];
stress[i][1] = buf[m++];
stress[i][2] = buf[m++];
stress[i][3] = buf[m++];
stress[i][4] = buf[m++];
stress[i][5] = buf[m++];
}
}
|