File: fix_multicontact_halfspace.cpp

package info (click to toggle)
liggghts 3.8.0%2Brepack1-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,368 kB
  • sloc: cpp: 151,203; javascript: 9,132; sh: 858; python: 676; makefile: 456; ansic: 411
file content (481 lines) | stat: -rw-r--r-- 21,530 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/* ----------------------------------------------------------------------
    This is the

    ██╗     ██╗ ██████╗  ██████╗  ██████╗ ██╗  ██╗████████╗███████╗
    ██║     ██║██╔════╝ ██╔════╝ ██╔════╝ ██║  ██║╚══██╔══╝██╔════╝
    ██║     ██║██║  ███╗██║  ███╗██║  ███╗███████║   ██║   ███████╗
    ██║     ██║██║   ██║██║   ██║██║   ██║██╔══██║   ██║   ╚════██║
    ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║  ██║   ██║   ███████║
    ╚══════╝╚═╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝   ╚═╝   ╚══════╝®

    DEM simulation engine, released by
    DCS Computing Gmbh, Linz, Austria
    http://www.dcs-computing.com, office@dcs-computing.com

    LIGGGHTS® is part of CFDEM®project:
    http://www.liggghts.com | http://www.cfdem.com

    Core developer and main author:
    Christoph Kloss, christoph.kloss@dcs-computing.com

    LIGGGHTS® is open-source, distributed under the terms of the GNU Public
    License, version 2 or later. It is distributed in the hope that it will
    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
    received a copy of the GNU General Public License along with LIGGGHTS®.
    If not, see http://www.gnu.org/licenses . See also top-level README
    and LICENSE files.

    LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
    the producer of the LIGGGHTS® software and the CFDEM®coupling software
    See http://www.cfdem.com/terms-trademark-policy for details.

-------------------------------------------------------------------------
    Contributing author and copyright for this file:
    Arno Mayrhofer (CFDEMresearch GmbH, Linz)

    Copyright 2016-     CFDEMresearch GmbH, Linz
------------------------------------------------------------------------- */

#include <cmath>
#include <mpi.h>
#include <string.h>
#include <stdlib.h>
#include "fix_multicontact_halfspace.h"
#include "vector_liggghts.h"
#include "math_extra_liggghts.h"
#include "update.h"
#include "atom.h"
#include "force.h"
#include "pair_gran.h"
#include "pair_gran_proxy.h"
#include "fix_contact_history_mesh.h"
#include "fix_wall_gran.h"
#include "comm.h"
#include "neighbor.h"
#include "fix_property_atom.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "memory.h"
#include "error.h"
#include <list>

using namespace LAMMPS_NS;
using namespace FixConst;

/* ---------------------------------------------------------------------- */

FixMultiContactHalfSpace::FixMultiContactHalfSpace(LAMMPS *lmp, int narg, char **arg) :
    Fix(lmp, narg, arg),
    pairgran_(0),
    geometric_prefactor(1.125)
{
    nevery = 1;

    int iarg = 3;
    bool hasargs = true;
    while(iarg < narg && hasargs)
    {
        hasargs = false;
        if (strcmp(arg[iarg],"geometric_prefactor") == 0) {
            if (narg < iarg+2)
                error->fix_error(FLERR,this,"not enough arguments for keyword 'geometric_prefactor'");
            iarg++;
            geometric_prefactor = force->numeric(FLERR,arg[iarg++]);
            if (geometric_prefactor <= 0.0)
                error->fix_error(FLERR,this,"geometric_prefactor > 0 required");
            hasargs = true;
        } else if(strcmp(style,"multicontact/halfspace") == 0) {
            char *errmsg = new char[strlen(arg[iarg])+50];
            sprintf(errmsg,"unknown keyword or wrong keyword order: %s", arg[iarg]);
            error->fix_error(FLERR,this,errmsg);
            delete []errmsg;
        }
    }

    if(!force->pair_match("gran", 0))
        error->fix_error(FLERR,this,"Please use a granular pair style before using this fix");

    int max_type = atom->get_properties()->max_type();
    Y = static_cast<FixPropertyGlobal*>(modify->find_fix_property("youngsModulus","property/global","peratomtype",max_type,0,style))->get_values();
    nu = static_cast<FixPropertyGlobal*>(modify->find_fix_property("poissonsRatio","property/global","peratomtype",max_type,0,style))->get_values();
}

/* ---------------------------------------------------------------------- */

FixMultiContactHalfSpace::~FixMultiContactHalfSpace()
{
    history_vector.clear();
    contact_property_atom_vector.clear();
}

/* ---------------------------------------------------------------------- */

void FixMultiContactHalfSpace::post_create()
{
    // request contactproperty atom (wall) fixes to be used
    static_cast<PairGran*>(force->pair_match("gran", 0))->do_store_multicontact_data();

    int nwalls = modify->n_fixes_style("wall/gran");
    for(int iwall = 0; iwall < nwalls; iwall++) {
        FixWallGran *fwg = static_cast<FixWallGran*>(modify->find_fix_style("wall/gran",iwall));

        if(fwg->is_mesh_wall())
        {
            int n_meshes = fwg->n_meshes();
            for(int imesh = 0; imesh < n_meshes; imesh++)
                (fwg->mesh_list())[imesh]->createMulticontactData();
        }
        else
            fwg->createMulticontactData();
    }
}

/* ---------------------------------------------------------------------- */

void FixMultiContactHalfSpace::init()
{
    if (force->pair == NULL)
        error->fix_error(FLERR,this,"No pair style is defined");

    pairgran_ = (PairGranProxy*)force->pair_match("gran",0);

    // check if surface model multicontact is specified
    // this automatically also creates the required contact history
    if (!pairgran_->contact_match("surface", "multicontact"))
        error->fix_error(FLERR,this,"Surface model is not multicontact");

    if (!pairgran_)
        error->fix_error(FLERR,this,"No valid granular pair style found");

    history_vector.clear();
    contact_property_atom_vector.clear();

    int sumDelta_offset_pair = pairgran_->get_history_offset("delta");
    if (sumDelta_offset_pair < 0)
        error->fix_error(FLERR,this,"Internal error: need delta history offset");
    history_vector.push_back(HistoryData('p', (void*) pairgran_, sumDelta_offset_pair));
    FixContactPropertyAtom *cpa = static_cast<FixContactPropertyAtom*>(modify->find_fix_id("multicontactData_"));
    if (!cpa)
        error->fix_error(FLERR,this,"Internal error: no contactproperty/atom fix found for granular pair");
    contact_property_atom_vector.push_back(cpa);

    int nwalls = modify->n_fixes_style("wall/gran");
    for(int iwall = 0; iwall < nwalls; iwall++)
    {
        FixWallGran *fwg = static_cast<FixWallGran*>(modify->find_fix_style("wall/gran",iwall));

        if (!fwg->contact_match("surface", "multicontact"))
            error->fix_error(FLERR,this,"Surface model of wall is not multicontact");

        if(fwg->is_mesh_wall())
        {
            
            int n_meshes = fwg->n_meshes();
            for(int imesh = 0; imesh < n_meshes; imesh++)
            {
                char fixid[200];
                const int sumDelta_offset_wall = fwg->get_history_offset("delta");
                if(sumDelta_offset_wall < 0)
                    error->fix_error(FLERR,this,"Internal error: need delta history data (for wall meshes)");
                sprintf(fixid,"tracker_%s",(fwg->mesh_list())[imesh]->id);
                history_vector.push_back(HistoryData('m', (void*)modify->find_fix_id(fixid), sumDelta_offset_wall));
                sprintf(fixid,"multicontactData_%s",(fwg->mesh_list())[imesh]->id);
                cpa = static_cast<FixContactPropertyAtom*>(modify->find_fix_id(fixid));
                if (!cpa)
                    error->fix_error(FLERR,this,"Internal error: no contactproperty/atom fix found for mesh wall");
                contact_property_atom_vector.push_back(cpa);
            }
        }
        else
        {
            
            char fixid[200];
            const int sumDelta_offset_wall = fwg->get_history_offset("delta");
            if(sumDelta_offset_wall < 0)
                error->fix_error(FLERR,this,"Internal error: need delta history data (for wall primitives)");
            sprintf(fixid,"history_%s",fwg->id);
            history_vector.push_back(HistoryData('w', (void*)modify->find_fix_id(fixid), sumDelta_offset_wall));
            sprintf(fixid,"multicontactData_%s",fwg->id);
            cpa = static_cast<FixContactPropertyAtom*>(modify->find_fix_id(fixid));
            if (!cpa)
                error->fix_error(FLERR,this,"Internal error: no contactproperty/atom fix found for mesh wall");
            contact_property_atom_vector.push_back(cpa);
        }
    }

}

/* ---------------------------------------------------------------------- */

int FixMultiContactHalfSpace::setmask()
{
    int mask = 0;
    mask |= PRE_FORCE | MIN_PRE_FORCE;
    return mask;
}

/* ---------------------------------------------------------------------- */

void FixMultiContactHalfSpace::setup_pre_force(int)
{
    pre_force(0);
}

/* ---------------------------------------------------------------------- */

void FixMultiContactHalfSpace::pre_force(int)
{
    // Clear all data in the FixContactPropertyAtom structure
    std::vector<FixContactPropertyAtom*>::iterator contact_property_atom = contact_property_atom_vector.begin();
    (*contact_property_atom)->clear();
    contact_property_atom++;
    for (; contact_property_atom < contact_property_atom_vector.end(); contact_property_atom++)
        static_cast<FixContactPropertyAtomWall*>(*contact_property_atom)->clear();

    int i,j;

    int nlocal = atom->nlocal;
    const double* const* x = atom->x;
    int *tag = atom->tag;
    int *type  = atom->type;
    int *mask = atom->mask;
    double *radius = atom->radius;

    // STEP 1:
    // Compute surface postion and get f.n and save it in a contactpropertyatom structure
    /////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    for (i = 0; i < nlocal; i++) {

        if (mask[i] & groupbit) {

            // small value for force epsilon
            const double Yi = Y[type[i]-1];
            const double F_eps = Yi*radius[i]*radius[i]*1e-14;

            // loop over all: pair and walls
            std::vector<HistoryData>::iterator history;
            for (history = history_vector.begin(), contact_property_atom = contact_property_atom_vector.begin();
                 history < history_vector.end() && contact_property_atom < contact_property_atom_vector.end();
                 history++, contact_property_atom++) {
                // loop over all contacts of particle i
                const int n = history->get_npartners(i);
                //for (j = 0; j < history->get_npartners(i); j++) {
                for (j = 0; j < n; j++) {

                    // get data pointer from contact history
                    double * const deltaData = history->get_data_ptr(i, j);
                    double surfPos_ij[4], surfPos_ji[4];

                    // compute surface position of contact ij and ji
                    history->compute_surfPos(i, j, x, deltaData, surfPos_ij, surfPos_ji, F_eps);
                    // get the normal force acting on the particle
                    double fn = history->get_fn(deltaData);

                    surfPos_ij[3] = fn;
                    surfPos_ji[3] = fn;
                    // save the newly computed variables in a contactpropertyatom fix that will be used throughout the time step
                    history->save_contact_property_atom(i, j, tag, surfPos_ij, surfPos_ji, *contact_property_atom);
                }
            }
        }
    }

    // STEP 2:
    // Compute delta_ij from contacts ik (k!=j)
    /////////////////////////////////////////////////////////
    for (i = 0; i < nlocal; i++) {

        if (mask[i] & groupbit) {

            const double Yi = Y[type[i]-1];
            const double nui = nu[type[i]-1];
            const double C1 = -(1.0+nui)/(2.0*M_PI*Yi)*geometric_prefactor;
            const double C2 = 3.0 - 4.0*nui;
            const double C3 = 1.0 - 2.0*nui;
            // small value for force epsilon
            const double F_eps = Yi*radius[i]*radius[i]*1e-14;

            std::list<double> delta_list;
            std::list<double*> surfPos;
            std::list<double> invMagSurfPos;
            std::list<double>::iterator delta_ij, delta_ik;
            std::list<double*>::iterator surfPos_ij, surfPos_ik;
            std::list<double>::iterator invMagSurfPos_ij, invMagSurfPos_ik;
            // loop over all contacts ij and get pointers to surfPos
            for (contact_property_atom = contact_property_atom_vector.begin(); contact_property_atom < contact_property_atom_vector.end(); contact_property_atom++) {
                for (j = 0; j < (*contact_property_atom)->get_npartners(i); j++) {
                        surfPos.push_back((*contact_property_atom)->contacthistory(i,j));
                        invMagSurfPos.push_back(1.0/fmax(vectorMag3D(surfPos.back()),1e-6*radius[i]));
                        delta_list.push_back(0.0);
                }
            }

            // loop over all contacts ij
            for (surfPos_ij = surfPos.begin(), invMagSurfPos_ij = invMagSurfPos.begin(), delta_ij = delta_list.begin();
                 *surfPos_ij != surfPos.back();
                 surfPos_ij++, invMagSurfPos_ij++, delta_ij++) {

                // loop over all contacts ik
                surfPos_ik = surfPos_ij;
                invMagSurfPos_ik = invMagSurfPos_ij;
                delta_ik = delta_ij;
                do {
                    surfPos_ik++;
                    invMagSurfPos_ik++;
                    delta_ik++;

                    const double f_ij = (*surfPos_ij)[3];
                    const double f_ik = (*surfPos_ik)[3];

                    if (f_ij > F_eps || f_ik > F_eps) { // check if one of the force magnitudes is larger than the threshold
                        double ukc[3];
                        vectorSubtract3D(*surfPos_ij, *surfPos_ik, ukc);
                        const double invDkc = 1.0/vectorMag3D(ukc);
                        if (invDkc < 1e10) {
                            const double nk_dot_nc = vectorDot3D(*surfPos_ij, *surfPos_ik)*(*invMagSurfPos_ij)*(*invMagSurfPos_ik);
                            const double ukc_dot_nc = -vectorDot3D(ukc, *surfPos_ij)*(*invMagSurfPos_ij)*invDkc;
                            const double ukc_dot_nk = -vectorDot3D(ukc, *surfPos_ik)*(*invMagSurfPos_ik)*invDkc;
                            double careful_expression = C2*nk_dot_nc + ukc_dot_nk*ukc_dot_nc;
                            if (f_ik > F_eps) {
                                double c3term = 0.0;
                                if (fabs(C3) > 1e-6) {
                                    const double divisor = 1.0 + ukc_dot_nk;
                                    if (divisor > 1e-6)
                                        c3term = -C3*(nk_dot_nc + ukc_dot_nc)/divisor;
                                }
                                *delta_ij += C1*f_ik * (careful_expression + c3term) * invDkc;
                            }
                            if (f_ij > F_eps) {
                                double c3term = 0.0;
                                if (fabs(C3) > 1e-6) {
                                    const double divisor = 1.0 - ukc_dot_nc;
                                    if (divisor > 1e-6)
                                        c3term = -C3*(nk_dot_nc - ukc_dot_nk)/divisor;
                                }
                                *delta_ik += C1*f_ij * (careful_expression + c3term) * invDkc;
                            }
                        }
                    }
                } while (*surfPos_ik != surfPos.back());
            }

            // loop over all contacts ij to save the delta values instead of the f.n values that were saved in the contact property atom structure before
            // this needs to be done after in order to avoid a race condition
            delta_ij = delta_list.begin();
            surfPos_ij = surfPos.begin();
            // loop over all contacts ij
            for (contact_property_atom = contact_property_atom_vector.begin(); contact_property_atom < contact_property_atom_vector.end(); contact_property_atom++) {
                for (j = 0; j < (*contact_property_atom)->get_npartners(i); j++) {
                    // get the pointer to the contact history
                    // replace f.n in the contactpropertyatom structure with delta_ij
                    (*surfPos_ij)[3] = *delta_ij;
                    // advance delta list iterator
                    delta_ij++;
                    surfPos_ij++;
                }
            }
            // clear the delta list so that it can be refilled for the next grain
            delta_list.clear();
        }
    }

    // STEP 3:
    // Communicate the contactpropertyatom data to all other processors
    /////////////////////////////////////////////////////////////////////////////////////////
    for (contact_property_atom = contact_property_atom_vector.begin(); contact_property_atom < contact_property_atom_vector.end(); contact_property_atom++)
        (*contact_property_atom)->do_forward_comm();
}

const int HistoryData::get_npartners(const int i)
{
    if (type == 'p') {
        NeighList* list = static_cast<PairGranProxy*>(fix_ptr)->list;
        return list->numneigh[i];
    } else if (type == 'm') {
        return static_cast<FixContactHistoryMesh*>(fix_ptr)->n_partner(i);
    } else { // == 'w'
        return 1; // primitives can only have one contact per particle
    }
}

double * const HistoryData::get_data_ptr(const int i, const int jj)
{
    if (type == 'p') {
        NeighList* list = static_cast<PairGranProxy*>(fix_ptr)->list;
        double * const all_contact_list = list->listgranhistory->firstdouble[i];
        return &all_contact_list[jj*list->listgranhistory->dnum + offset];
    } else if (type == 'm') {
        const int j = static_cast<FixContactHistoryMesh*>(fix_ptr)->get_contact(i, jj);
        return static_cast<FixContactHistoryMesh*>(fix_ptr)->contacthistory(i,j) + sizeof(double)*offset;
    } else { // == 'w'
        return static_cast<FixPropertyAtom*>(fix_ptr)->array_atom[i] + sizeof(double)*offset;
    }
}

void HistoryData::compute_surfPos(const int i, const int jj, const double * const *x, const double * const data_ptr, double * const surfPos_ij, double * const surfPos_ji, const double F_eps)
{
    if (type == 'p') {
        const NeighList * const list = static_cast<PairGranProxy*>(fix_ptr)->list;
        const int j = list->firstneigh[i][jj];
        // in the following the following computations are performed:
        // normal of contact
        // n = (x_j - x_i) / |(x_j - x_i)|
        // closest point of sphere_i to midpoint_j:
        // cp_i = x[i] + n * (r_i + delta_ij)
        // closest point of sphere_j to midpoint_i:
        // cp_j = x[j] - n * (r_j + delta_ji)
        // actual contact is at the midpoint:
        // midPoint = (cp_i + cp_j)/2
        // relative surface Position:
        // surfPos_ij = midPoint - x_i
        // surfPos_ji = midPoint - x_j
        //
        // the following code uses a few algebraic reformulations for optimization reasons
        
        double xij[3];
        vectorSubtract3D(x[j], x[i], &(xij[0]));
        const double length_xij = vectorMag3D(xij);
        if (data_ptr[2] > F_eps) {
            double tmp[3];
            vectorScalarMult3D(xij, (data_ptr[0] - data_ptr[1])*0.5/length_xij, tmp);
            vectorAddMultiple3D(tmp,  0.5, xij, surfPos_ij);
            vectorAddMultiple3D(tmp, -0.5, xij, surfPos_ji);
        } else {
            // no direct contact
            // surface position will be (r_i + delta_ij)*n
            vectorScalarMult3D(xij,  data_ptr[0]/length_xij, surfPos_ij);
            vectorScalarMult3D(xij, -data_ptr[1]/length_xij, surfPos_ji);
        }
    } else {
        vectorCopy3D(data_ptr, surfPos_ij);
    }
}

double HistoryData::get_fn(const double * const data_ptr)
{
    if (type == 'p')
        return data_ptr[2];
    else
        return data_ptr[3];
}

void HistoryData::save_contact_property_atom(const int i, const int jj, const int * const tag, const double * const surfPos_ij, const double * const surfPos_ji, FixContactPropertyAtom *cpa)
{
    if (type == 'p') {
        const NeighList * const list = static_cast<PairGranProxy*>(fix_ptr)->list;
        const int j = list->firstneigh[i][jj];
        cpa->add_partner(i, tag[j], surfPos_ij);
        cpa->add_partner(j, tag[i], surfPos_ji);
    } else if (type == 'm') {
        const FixContactHistoryMesh * const fix_history = static_cast<FixContactHistoryMesh*>(fix_ptr);
        const int idTri = fix_history->get_partner_idTri(i, jj);
        cpa->add_partner(i, idTri, surfPos_ij);
    } else {
        // only add if we have a surfpos != 0
        const double lenSurfPos = vectorMag3DSquared(surfPos_ij);
        if (lenSurfPos > 1e-14) {
            cpa->add_partner(i, 1, surfPos_ij);
        }
    }
}