File: geometry.c

package info (click to toggle)
lightspeed 1.2-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,052 kB
  • ctags: 1,193
  • sloc: ansic: 11,604; sh: 327; makefile: 205; sed: 93
file content (654 lines) | stat: -rw-r--r-- 17,121 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/* geometry.c */

/* Various geometrical and geometry-related routines */

/*
 *  ``The contents of this file are subject to the Mozilla Public License
 *  Version 1.0 (the "License"); you may not use this file except in
 *  compliance with the License. You may obtain a copy of the License at
 *  http://www.mozilla.org/MPL/
 *
 *  Software distributed under the License is distributed on an "AS IS"
 *  basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
 *  License for the specific language governing rights and limitations
 *  under the License.
 *
 *  The Original Code is the "Light Speed!" relativistic simulator.
 *
 *  The Initial Developer of the Original Code is Daniel Richard G.
 *  Portions created by the Initial Developer are Copyright (C) 1999
 *  Daniel Richard G. <skunk@mit.edu> All Rights Reserved.
 *
 *  Contributor(s): ______________________________________.''
 */


#include "lightspeed.h"


/* Allocates an ogl_object */
ogl_object *
alloc_ogl_object( int num_vertices, int num_indices )
{
	ogl_object *new_obj;
	int i;

	new_obj = xmalloc( sizeof(ogl_object) );
	new_obj->num_vertices = num_vertices;
	new_obj->vertices0 = xmalloc( num_vertices * sizeof(point) );
	new_obj->normals0 = xmalloc( num_vertices * sizeof(point) );
	new_obj->iarrays = xmalloc( num_vertices * sizeof(ogl_point) );
	/* Initialize "a" fields in iarrays, since we don't really use them */
	for (i = 0; i < num_vertices; i++)
		new_obj->iarrays[i].a = 1.0;
	new_obj->num_indices = num_indices;
	new_obj->indices = xmalloc( num_indices * sizeof(unsigned int) );
	new_obj->pre_dlist = 0; /* null display list */
	new_obj->post_dlist = 0; /* ditto */

	return new_obj;
}


/* Returns the size in memory (bytes) used by an ogl_object having
 * so many vertices and so many indices */
int
calc_ogl_object_memusage( int num_vertices, int num_indices )
{
	int num_bytes;

	/* The vertices0 and normals0 arrays */
	num_bytes = 2 * num_vertices * sizeof(point);
	/* The C4F+N3F+V3F superarray */
	num_bytes += num_vertices * sizeof(ogl_point);
	/* The indices array */
	num_bytes += num_indices * sizeof(unsigned int);
	/* The ogl_object structure itself */
	num_bytes += sizeof(ogl_object);

	return num_bytes;
}


/* Deallocates an ogl_object */
void
free_ogl_object( ogl_object *obj )
{
	xfree( obj->vertices0 );
	xfree( obj->normals0 );
	xfree( obj->iarrays );
	xfree( obj->indices );
	if (obj->pre_dlist != 0)
		glDeleteLists( obj->pre_dlist, 1 );
	if (obj->post_dlist != 0)
		glDeleteLists( obj->post_dlist, 1 );
	xfree( obj );
}


/* Gets rid of all current objects */
void
clear_all_objects( void )
{
	int i;

	for (i = 0; i < num_vehicle_objs; i++)
		free_ogl_object( vehicle_objs[i] );
	xfree( vehicle_objs );
	num_vehicle_objs = 0;
}


void
rotate_all_objects( int direction )
{
	ogl_object *obj;
	float x0,y0,z0;
	float x,y,z;
	float xmax = -1E6, ymax = -1E6, zmax = -1E6;
	float xmin = 1E6, ymin = 1E6, zmin = 1E6;
	int o, v;

	for (o = 0; o < num_vehicle_objs; o++) {
		obj = vehicle_objs[o];
		for (v = 0; v < obj->num_vertices; v++) {
			/* Rotate vertex */
			x0 = obj->vertices0[v].x;
			y0 = obj->vertices0[v].y;
			z0 = obj->vertices0[v].z;
			rotate_xyz( direction, &x, &y, &z, x0, y0, z0 );
			obj->vertices0[v].x = x;
			obj->vertices0[v].y = y;
			obj->vertices0[v].z = z;

			/* Update vehicle extents */
			xmin = MIN(x, xmin);
			xmax = MAX(x, xmax);
			ymin = MIN(y, ymin);
			ymax = MAX(y, ymax);
			zmin = MIN(z, zmin);
			zmax = MAX(z, zmax);

			/* Rotate normal too */
			x0 = obj->normals0[v].x;
			y0 = obj->normals0[v].y;
			z0 = obj->normals0[v].z;
			rotate_xyz( direction, &x, &y, &z, x0, y0, z0 );
			obj->normals0[v].x = x;
			obj->normals0[v].y = y;
			obj->normals0[v].z = z;
		}
	}

	/* Reset vehicle_extents */
	vehicle_extents.xmin = xmin;
	vehicle_extents.xmax = xmax;
	vehicle_extents.ymin = ymin;
	vehicle_extents.ymax = ymax;
	vehicle_extents.zmin = zmin;
	vehicle_extents.zmax = zmax;
	vehicle_extents.avg = ((xmax - xmin) + (ymax - ymin) + (zmax - zmin)) / 3;

	queue_redraw( -1 );
}


/* Rotates an XYZ triplet whichever way specified
 * The ?_ALIGN actions realign a point from the x-axis to the indicated axis */
void
rotate_xyz( int action, float *x, float *y, float *z, float x0, float y0, float z0 )
{
	switch (action) {
	case X_ALIGN:
		*x = x0;
		*y = y0;
		*z = z0;
		break;

	case Y_ALIGN:
		*x = - y0;
		*y = x0;
		*z = z0;
		break;

	case Z_ALIGN:
		*x = - z0;
		*y = y0;
		*z = x0;
		break;

	case Z_ROTATE_CW:
		*x = y0;
		*y = - x0;
		*z = z0;
		break;

	case Z_ROTATE_CCW:
		*x = - y0;
		*y = x0;
		*z = z0;
		break;

	default:
#ifdef DEBUG
		crash( "rotate_xyz( ): invalid action" );
#endif
		return;
	}
}


/* Calculate unit normal vector for a given triangle */
point *
calc_tri_normal( point *a, point *b, point *c )
{
	static point normal;
	point vec_ab;
	point vec_ac;
	float d;

	/* Obtain A->B vector */
	vec_ab.x = b->x - a->x;
	vec_ab.y = b->y - a->y;
	vec_ab.z = b->z - a->z;
	/* Obtain A->C vector */
	vec_ac.x = c->x - a->x;
	vec_ac.y = c->y - a->y;
	vec_ac.z = c->z - a->z;
	/* Obtain cross product (A->B x A->C) to get normal vector */
	normal.x = vec_ab.y * vec_ac.z - vec_ab.z * vec_ac.y;
	normal.y = vec_ab.z * vec_ac.x - vec_ab.x * vec_ac.z;
	normal.z = vec_ab.x * vec_ac.y - vec_ab.y * vec_ac.x;
	/* Scale it by own length to get unit normal vector */
	d = sqrt( SQR(normal.x) + SQR(normal.y) + SQR(normal.z) );
	if (d < 1E-6)
		d = 1.0;
	normal.x /= d;
	normal.y /= d;
	normal.z /= d;

	return &normal;
}


/* Calculate the centroid of a given triangle */
point *
calc_tri_centroid( point *a, point *b, point *c )
{
	static point centroid;

	centroid.x = (a->x + b->x + c->x) / 3.0;
	centroid.y = (a->y + b->y + c->y) / 3.0;
	centroid.z = (a->z + b->z + c->z) / 3.0;

	return &centroid;
}


/* Calculate area of a given triangle */
float
calc_tri_area( point *a, point *b, point *c )
{
	point vec_ab, vec_ac;
	point xprod;

	/* Obtain A->B vector */
	vec_ab.x = b->x - a->x;
	vec_ab.y = b->y - a->y;
	vec_ab.z = b->z - a->z;
	/* Obtain A->C vector */
	vec_ac.x = c->x - a->x;
	vec_ac.y = c->y - a->y;
	vec_ac.z = c->z - a->z;
	/* Magnitude of cross product == 2 * area of ascribed triangle */
	xprod.x = vec_ab.y * vec_ac.z - vec_ab.z * vec_ac.y;
	xprod.y = vec_ab.z * vec_ac.x - vec_ab.x * vec_ac.z;
	xprod.z = vec_ab.x * vec_ac.y - vec_ab.y * vec_ac.x;

	return sqrt( SQR(xprod.x) + SQR(xprod.y) + SQR(xprod.z) ) / 2.0;
}


void
show_geometry_stats( void )
{
	ogl_object *obj;
	float r,g,b;
	float ex,ey,ez;
	int vnum, inum;
	int vnum_total = 0, inum_total = 0;
	int i;

	printf( "=========== Light Speed! geometry stats ===========\n" );
	printf( "Object    Vertices    Indices    RGB base color\n" );
	printf( "------    --------    -------    ------------------\n" );
	for (i = 0; i < num_vehicle_objs; i++) {
		obj = vehicle_objs[i];
		vnum = obj->num_vertices;
		vnum_total += vnum;
		inum = obj->num_indices;
		inum_total += inum;
		r = obj->color0.r;
		g = obj->color0.g;
		b = obj->color0.b;
		printf( "%6d%12d%11d    (%.2f, %.2f, %.2f)\n", i, vnum, inum, r, g, b );
	}
	printf( "------    --------    -------    ------------------\n" );
	printf( "Object    Vertices    Indices    RGB base color\n" );
	printf( "------    --------    -------\n" );
	printf( " Total%12d%11d\n", vnum_total, inum_total );
	ex = vehicle_extents.xmax - vehicle_extents.xmin;
	ey = vehicle_extents.ymax - vehicle_extents.ymin;
	ez = vehicle_extents.zmax - vehicle_extents.zmin;
	printf( " Size:  %.3f x %.3f x %.3f\n", ex, ey, ez );
	printf( "===================================================\n" );
	fflush( stdout );
}


#ifdef WITH_SRS_EXPORTER

/* Write out an .srs (Special Relativity Scene) file, for use with the
 * BACKLIGHT relativistic raytracer */
int
export_srs( const char *filename, int width, int height, int stereo_view, int visible_faces_only )
{
	FILE *srs;
	camera eye_cam;
	point p;
	rgb_color *bg;
	float dx,dy;
	float eye_dx, eye_dy;
	float t;
	int flag, i;

	srs = fopen( filename, "w" );

	/* Initialize output camera */
	memcpy( &out_cam, usr_cams[0], sizeof(camera) );
	out_cam.width = width;
	out_cam.height = height;

	/* Header and global settings */
	fprintf( srs, "// %s\n", file_basename( filename, NULL ) );
	fprintf( srs, "// File generated by the Light Speed! SRS exporter\n" );
	fprintf( srs, "// for use with the BACKLIGHT relativistic raytracer\n\n" );
	fprintf( srs, "Width = %d\n", width );
	fprintf( srs, "Height = %d\n\n", height );
	fprintf( srs, "Antialias = 1\n" );
	/* Doppler shift switch */
	flag = warp( QUERY, MESG_(WARP_DOPPLER_SHIFT) );
	i = flag ? 1 : 0;
	fprintf( srs, "Doppler = %d\n", i );
	/* Headlight effect (intensity) switch */
	flag = warp( QUERY, MESG_(WARP_HEADLIGHT_EFFECT) );
	i = flag ? 1 : 0;
	fprintf( srs, "Intensity = %d\n\n", i );
	fprintf( srs, "Output_File_Name = \"%s\"\n\n", file_basename( filename, ".srs" ) );

	/* Background color */
	fprintf( srs, "background { colour rgb " );
	bg = &background;
	fprintf( srs, "< %.2f, %.2f, %.2f > }\n\n", bg->r, bg->g, bg->b );

	/* Stationary (observer) frame */
	fprintf( srs, "frame {\n" );
	fprintf( srs, "\t// Observer frame (stationary)\n" );

	/* Camera(s) */
	t = C * cur_time_t;
	if (stereo_view) {
		/* Stereoscopic view */
		dx = out_cam.target.x - out_cam.pos.x;
		dy = out_cam.target.y - out_cam.pos.y;
		eye_dx = (EYE_SPACING / 2.0) * dy / sqrt( SQR(dx) + SQR(dy) );
		eye_dy = - (EYE_SPACING / 2.0) * dx / sqrt( SQR(dx) + SQR(dy) );

		fprintf( srs, "\t// Left eye view\n" );
		memcpy( &eye_cam, &out_cam, sizeof(camera) );
		eye_cam.pos.x -= eye_dx;
		eye_cam.pos.y -= eye_dy;
		write_srs_camera( srs, &eye_cam, t );

		fprintf( srs, "\t// Right eye view\n" );
		memcpy( &eye_cam, &out_cam, sizeof(camera) );
		eye_cam.pos.x += eye_dx;
		eye_cam.pos.y += eye_dy;
		write_srs_camera( srs, &eye_cam, t );
	}
	else {
		/* Normal view */
		write_srs_camera( srs, &out_cam, t );
	}

	/* Light source */
	fprintf( srs, "\tlight_source {\n" );
	convert_to_srs_cs( &p, &out_cam.pos );
	fprintf( srs, "\t\t< %.3f, %.3f, %.3f >\n", p.x, p.y, p.z );
	fprintf( srs, "\t\tcolour rgb " );
	fprintf( srs, "< 1, 1, 1 >\n" );
	fprintf( srs, "\t}\n" );
	fprintf( srs, "}\n\n" );

	/* Moving (object) frame */
	fprintf( srs, "frame {\n" );
	fprintf( srs, "\t// Object frame (moving)\n" );
	fprintf( srs, "\t// v = %s\n", velocity_string( velocity, TRUE ) );
	fprintf( srs, "\tvelocity " );
	fprintf( srs, "< %.6f, 0, 0 >\n", velocity / C );

	/* Export lattice or arbitrary mesh geometry */
	fprintf( srs, "\n" );
	if (object_mode == MODE_LATTICE)
		write_srs_lattice( srs );
	else
		write_srs_mesh( srs, &out_cam.pos, visible_faces_only );
	fprintf( srs, "\n" );

	fprintf( srs, "}\n" );
	fclose( srs );

	return 0;
}


void
write_srs_mesh( FILE *srs, point *cam_pos, int visible_faces_only )
{
	ogl_object *obj;
	point *face_verts[4];
	point *face_norms[4];
	point *vert_a, *vert_b;
	point tri_verts[3];
	point *norm, *cent;
	float dx,dy,dz;
	float fdir;
	int checks[6][2] = { {0,1}, {1,2}, {2,0}, {0,3}, {1,3}, {2,3} };
	int face_size;
	int num_faces;
	int num_checks;
	int *face_flags;
	int base, ind, ind_a, ind_b;
	int bad_face, at_least_one_good_face;
	int o, f, i, a, b;

	fprintf( srs, "\t// **** Begin mesh definition ****\n" );

	for (o = 0; o < num_vehicle_objs; o++) {
		obj = vehicle_objs[o];
		switch (obj->type) {
		case GL_TRIANGLES:
			face_size = 3;
			num_checks = 3;
			break;

		case GL_QUADS:
			face_size = 4;
			num_checks = 6;
			break;

		default:
#ifdef DEBUG
			crash( "write_srs_mesh( ): invalid object type" );
#endif
			return;
		}
		num_faces = obj->num_indices / face_size;
		face_flags = xmalloc( num_faces * sizeof(int) );

		/* First, check for good faces in this object
		 * (good = no coincident vertices, no zero normals) */
		at_least_one_good_face = FALSE;
		for (f = 0; f < num_faces; f++) {
			base = f * face_size;
			bad_face = FALSE; /* benefit of the doubt */

			for (i = 0; i < num_checks; i++) {
				/* Check between vertex pair */
				a = checks[i][0];
				b = checks[i][1];
				ind_a = obj->indices[base + a];
				ind_b = obj->indices[base + b];
				vert_a = &obj->vertices0[ind_a];
				vert_b = &obj->vertices0[ind_b];
				dx = ABS(vert_a->x - vert_b->x);
				dy = ABS(vert_a->y - vert_b->y);
				dz = ABS(vert_a->z - vert_b->z);
				if ((dx < 1E-4) && (dy < 1E-4) && (dz < 1E-4))
					bad_face = TRUE;
			}

			/* Check face normals */
			for (i = 0; i < face_size; i++) {
				ind = obj->indices[base + i];
				norm = &obj->normals0[ind];
				dx = ABS(norm->x);
				dy = ABS(norm->y);
				dz = ABS(norm->z);
				if ((dx < 1E-2) && (dy < 1E-2) && (dz < 1E-2))
					bad_face = TRUE;
			}

			/* If only visible faces are desired, check if face
			 * is facing the camera (dropping it if not) */
			if (visible_faces_only && !bad_face) {
				for (i = 0; i < 3; i++) {
					ind = obj->indices[base + i];
					memcpy( &tri_verts[i], &obj->vertices0[ind], sizeof(point) );
					warp_point( &tri_verts[i], NULL, cam_pos );
				}
				/* Calculate (warped) flat triangle normal
				 * (for quads: 4th vertex is coplanar anyway) */
				norm = calc_tri_normal( &tri_verts[0], &tri_verts[1], &tri_verts[2] );
				/* Calculate (warped) centroid and then the
				 * triangle-to-camera (reverse view) vector */
				cent = calc_tri_centroid( &tri_verts[0], &tri_verts[1], &tri_verts[2] );
				dx = cam_pos->x - cent->x;
				dy = cam_pos->y - cent->y;
				dz = cam_pos->z - cent->z;
				/* Get dot product of normal and rview vectors */
				fdir = (norm->x * dx) + (norm->y * dy) + (norm->z * dz);
				if (fdir < 0)
					bad_face = TRUE; /* not facing camera */
			}

			if (bad_face)
				face_flags[f] = FALSE;
			else {
				face_flags[f] = TRUE;
				at_least_one_good_face = TRUE;
			}
		}

		if (!at_least_one_good_face) {
			xfree( face_flags );
			continue;
		}

		/* Write out the good faces */
		fprintf( srs, "\tunion {\n" );
		for (f = 0; f < num_faces; f++) {
			if (!face_flags[f])
				continue; /* skip bad face */
			base = f * face_size;
			for (i = 0; i < face_size; i++) {
				ind = obj->indices[base + i];
				face_verts[i] = &obj->vertices0[ind];
				face_norms[i] = &obj->normals0[ind];
			}
			write_srs_smooth_triangle( srs, face_verts, face_norms );
			if (face_size == 4) {
				/* Output a 2nd triangle to make a quad
				 * Shift 3rd and 4th vertices down */
				face_verts[1] = face_verts[2];
				face_norms[1] = face_norms[2];
				face_verts[2] = face_verts[3];
				face_norms[2] = face_norms[3];
				write_srs_smooth_triangle( srs, face_verts, face_norms );
			}
		}

		xfree( face_flags );

		/* Write out face group color */
		write_srs_pigment( srs, &obj->color0 );
		fprintf( srs, "\t}\n" );
	}

	fprintf( srs, "\t// **** End mesh definition ****\n" );
}


void
write_srs_camera( FILE *srs, camera *cam, float t )
{
	point p;
	float aspect_ratio;

	aspect_ratio = (float)cam->width / (float)cam->height;

	fprintf( srs, "\tcamera {\n" );
	fprintf( srs, "\t\tlocation " );
	convert_to_srs_cs( &p, &cam->pos );
	fprintf( srs, "< %.3f, %.3f, %.3f >, %.3f\n", p.x, p.y, p.z, t );
	fprintf( srs, "\t\tup < 0, 1, 0 >\n" );
	fprintf( srs, "\t\tright " );
	fprintf( srs, "< %.3f, 0, 0 >\n", - aspect_ratio );
	fprintf( srs, "\t\tangle %.2f\n", cam->fov );
	fprintf( srs, "\t\tlook_at " );
	convert_to_srs_cs( &p, &cam->target );
	fprintf( srs, "< %.3f, %.3f, %.3f >\n", p.x, p.y, p.z );
	fprintf( srs, "\t}\n" );
}


void
write_srs_sphere( FILE *srs, point *center, float radius )
{
	fprintf( srs, "\t\tsphere {\n" );
	fprintf( srs, "\t\t\t< %.3f, %.3f, %.3f >,\n", center->x, center->y, center->z );
	fprintf( srs, "\t\t\t%.3f\n", radius );
	fprintf( srs, "\t\t}\n" );
}


void
write_srs_cylinder( FILE *srs, point *p1, point *p2, float radius )
{
	fprintf( srs, "\t\tcylinder {\n" );
	fprintf( srs, "\t\t\t< %.3f, %.3f, %.3f >,\n", p1->x, p1->y, p1->z );
	fprintf( srs, "\t\t\t< %.3f, %.3f, %.3f >,\n", p2->x, p2->y, p2->z );
	fprintf( srs, "\t\t\t%.3f\n", radius );
	fprintf( srs, "\t\t}\n" );
}


void
write_srs_smooth_triangle( FILE *srs, point **vertices, point **normals )
{
	point vert_srs, norm_srs;
	int i;

	fprintf( srs, "\t\tsmooth_triangle {\n" );
	for (i = 0; i < 3; i++) {
		convert_to_srs_cs( &vert_srs, vertices[i] );
		fprintf( srs, "\t\t\t< %.4f, %.4f, %.4f >,\n", vert_srs.x, vert_srs.y, vert_srs.z );
		convert_to_srs_cs( &norm_srs, normals[i] );
		fprintf( srs, "\t\t\t    < %.4f, %.4f, %.4f >", norm_srs.x, norm_srs.y, norm_srs.z );
		if (i < 2)
			fprintf( srs, ",\n" );
		else
			fprintf( srs, "\n" );
	}
	fprintf( srs, "\t\t}\n" );
}


void
write_srs_pigment( FILE *srs, rgb_color *color )
{
	float r,g,b;

	fprintf( srs, "\t\tpigment {\n" );
	fprintf( srs, "\t\t\tcolour rgb " );
	r = color->r;
	g = color->g;
	b = color->b;
	fprintf( srs, "< %.3f, %.3f, %.3f >\n", r, g, b );
	fprintf( srs, "\t\t}\n" );
}


/* Converts a point from our coordinate system (right-handed, z-axis up) to the
 * BACKLIGHT/SRS coordinate system (right-handed, y-axis up) */
void
convert_to_srs_cs( point *p_srs, point *p_ls )
{
	p_srs->x = p_ls->x;
	p_srs->y = p_ls->z;
	p_srs->z = - p_ls->y;
}

#endif /* WITH_SRS_EXPORTER */

/* end geometry.c */