File: lms7002m_agc.c

package info (click to toggle)
limesuite 23.11.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 17,228 kB
  • sloc: cpp: 157,511; ansic: 6,852; python: 197; sh: 56; xml: 21; makefile: 19
file content (221 lines) | stat: -rw-r--r-- 6,507 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include "lms7002m_controls.h"
#include "spi.h"
#include "LMS7002M_parameters_compact.h"
#include "typedefs.h"
#include "mcu_defines.h"
#include "lms7002m_calibrations.h"


#include <math.h>

#ifdef __cplusplus
bool hasStopped = false;
bool stopProcedure = false;
#else
extern bool hasStopped;
extern bool stopProcedure;
#endif

static uint16_t ROM stateAddresses[] = {0x0081, 0x010F, 0x0126, 0x040A, 0x040C};
//double space to store both channels
static uint16_t xdata stateStorage[2*sizeof(stateAddresses)/sizeof(uint16_t)];

static void StoreState(bool write)
{
    uint16_t x0020 = SPI_read(0x0020);
    uint8_t storageIndex = 0;
    uint8_t ch;
    for(ch = 2; ch>0; --ch)
    {
        uint8_t i = 0;
        SPI_write(0x0020, (x0020 & 0xFFFC) | i);
        for(; i < sizeof(stateAddresses)/sizeof(uint16_t); ++i)
        {
            if(write)
                SPI_write(stateAddresses[i], stateStorage[storageIndex]);
            else
                stateStorage[storageIndex] = SPI_read(stateAddresses[i]);
            ++storageIndex;
        }
    }
    SPI_write(0x0020, x0020);
}

#define TABLE_ENTRY(gain_setting, gainLNA, gainPGA) (gainPGA << 4 | gainLNA)
#define GET_PGA_GAIN(value) ((value >> 4) & 0x1F)
#define GET_LNA_GAIN(value) ((value) & 0xF)
static ROM const uint16_t AGC_gain_table[] = {
TABLE_ENTRY(-12,1,0),
TABLE_ENTRY(-11,1,1),
TABLE_ENTRY(-10,1,2),
TABLE_ENTRY(-9,2,0),
TABLE_ENTRY(-8,2,1),
TABLE_ENTRY(-7,2,2),
TABLE_ENTRY(-6,2,3),
TABLE_ENTRY(-5,3,1),
TABLE_ENTRY(-4,3,2),
TABLE_ENTRY(-3,3,3),
TABLE_ENTRY(-2,3,4),
TABLE_ENTRY(-1,4,2),
TABLE_ENTRY(0,4,3),
TABLE_ENTRY(1,4,4),
TABLE_ENTRY(2,4,5),
TABLE_ENTRY(3,5,3),
TABLE_ENTRY(4,5,4),
TABLE_ENTRY(5,5,5),
TABLE_ENTRY(6,5,6),
TABLE_ENTRY(7,6,4),
TABLE_ENTRY(8,6,5),
TABLE_ENTRY(9,6,6),
TABLE_ENTRY(10,6,7),
TABLE_ENTRY(11,7,5),
TABLE_ENTRY(12,7,6),
TABLE_ENTRY(13,7,7),
TABLE_ENTRY(14,7,8),
TABLE_ENTRY(15,8,6),
TABLE_ENTRY(16,8,7),
TABLE_ENTRY(17,8,8),
TABLE_ENTRY(18,8,9),
TABLE_ENTRY(19,9,7),
TABLE_ENTRY(20,9,8),
TABLE_ENTRY(21,9,9),
TABLE_ENTRY(22,9,10),
TABLE_ENTRY(23,10,10),
TABLE_ENTRY(24,10,11),
TABLE_ENTRY(25,10,12),
TABLE_ENTRY(26,10,13),
TABLE_ENTRY(27,11,13),
TABLE_ENTRY(28,11,14),
TABLE_ENTRY(29,11,15),
TABLE_ENTRY(30,11,16),
TABLE_ENTRY(31,11,17),
TABLE_ENTRY(32,11,18),
TABLE_ENTRY(33,11,19),
TABLE_ENTRY(34,11,20),
TABLE_ENTRY(35,11,21),
TABLE_ENTRY(36,11,22),
TABLE_ENTRY(37,11,23),
TABLE_ENTRY(38,11,24),
TABLE_ENTRY(39,11,25),
TABLE_ENTRY(40,11,26),
TABLE_ENTRY(41,11,27),
TABLE_ENTRY(42,11,28),
TABLE_ENTRY(43,11,29),
TABLE_ENTRY(44,11,30),
TABLE_ENTRY(45,11,31),
TABLE_ENTRY(46,12,31),
TABLE_ENTRY(47,13,31),
TABLE_ENTRY(48,14,31),
TABLE_ENTRY(49,15,31)
};

uint8_t RunAGC(uint32_t wantedRSSI)
{
    xdata uint32_t lastRSSI[2];
    uint16_t x0400[2];
    uint8_t status;
    uint8_t gainLNA[2];
    uint8_t gainPGA[2];
    uint8_t ch;
    uint16_t x0020 = SPI_read(0x0020);
    gainLNA[1] = gainLNA[0] = 11;
    gainPGA[1] = gainPGA[0] = 31;
    hasStopped = false;
    StoreState(false);
    //Setup
    if(Get_SPI_Reg_bits(TRX_GAIN_SRC) == false)
    {
        for(ch=0; ch<2; ++ch)
        {
            SPI_write(0x0020, (x0020 & 0xFFFC) | (ch+1));
            Modify_SPI_Reg_bits(CG_IAMP_TBB_R3, Get_SPI_Reg_bits(CG_IAMP_TBB));
            Modify_SPI_Reg_bits(LOSS_LIN_TXPAD_TRF_R3, Get_SPI_Reg_bits(LOSS_LIN_TXPAD_TRF));
            Modify_SPI_Reg_bits(LOSS_MAIN_TXPAD_TRF_R3, Get_SPI_Reg_bits(LOSS_MAIN_TXPAD_TRF));
        }
    }
    Modify_SPI_Reg_bits(TRX_GAIN_SRC, 1);
    for(ch=0; ch<2; ++ch)
    {
        SPI_write(0x0020, (x0020 & 0xFFFC) | (ch+1));
        Modify_SPI_Reg_bits(ICT_TIAMAIN_RFE, 31);
        Modify_SPI_Reg_bits(ICT_TIAOUT_RFE, 4);
        //C_CTL_PGA_RBB 0, TIA 2
        SPI_write(0x0126, (gainPGA[ch] << 6) | (gainLNA[ch] << 2) | 2);

        status = CalibrateRx(false, false);
        //if(status != MCU_NO_ERROR)
            //goto AGC_END;
        //Modify_SPI_Reg_bits(AGC_MODE_RXTSP, 1);
        //Modify_SPI_Reg_bits(AGC_AVG_RXTSP, 0);
        SPI_write(0x040A, 0x1000);
        Modify_SPI_Reg_bits(AGC_BYP_RXTSP, 0);

        if(Get_SPI_Reg_bits(CMIX_BYP_RXTSP) == 0)
        {
            Modify_SPI_Reg_bits(CMIX_GAIN_RXTSP, 1);
            Modify_SPI_Reg_bits(CMIX_GAIN_RXTSP_R3, 0);
        }
        x0400[ch] = SPI_read(0x0400) & ~0xF000; //CAPTURE 0, CAPSEL 0
    }
    UpdateRSSIDelay();

    while(!stopProcedure)
    {
        //Need to wait only
        for(ch=0; ch<2; ++ch)
        {
            float dBdiff;
            uint8_t LNA_gain_available;
            uint32_t rssi;
            bool needUpdate = false;
            SPI_write(0x0020, (x0020 & 0xFFFC) | (ch+1));
            //CAPTURE RSSI
            SPI_write(0x0400, x0400[ch]);
            SPI_write(0x0400, x0400[ch] | 0x8000);
            rssi = SPI_read(0x040F);
            rssi = (rssi << 2 | (SPI_read(0x040E) & 0x3));

            if(rssi == lastRSSI[ch] || rssi == 0)
                continue;
            lastRSSI[ch] = rssi;

            if(gainLNA[ch] <= 9)
                LNA_gain_available = 3*(11-gainLNA[ch]); //G_LNA=0 not allowed
            else
                LNA_gain_available = 15-gainLNA[ch];

            dBdiff = 20*log10((float)wantedRSSI/rssi);
            if (dBdiff < 0 && rssi > 0x14000)
            {
                gainPGA[ch] = clamp(gainPGA[ch] - 12, 0, 31);
                gainLNA[ch] = clamp(gainLNA[ch] -  3, 0, 15);
                needUpdate = true;
            }
            else if(dBdiff < 0 || (dBdiff > 0 && LNA_gain_available+31-gainPGA[ch] > 0))
            {
                int8_t total_gain_current = 30-LNA_gain_available + gainPGA[ch];
                const uint16_t gains = AGC_gain_table[clamp(total_gain_current+dBdiff, 0, 61)];
                uint8_t newLNA = GET_LNA_GAIN(gains);
                uint8_t newPGA = GET_PGA_GAIN(gains);
                if(newPGA != gainPGA[ch] || newLNA != gainLNA[ch])
                {
                    gainLNA[ch] = GET_LNA_GAIN(gains);
                    gainPGA[ch] = GET_PGA_GAIN(gains);
                    needUpdate = true;
                }
            }
            if(needUpdate)
            {
                uint16_t reg126;
                //set C_CTL_PGA_RBB
                reg126 = GetValueOf_c_ctl_pga_rbb(gainPGA[ch]) << 11;
                SPI_write(0x0126, reg126 | (gainPGA[ch] << 6) | (gainLNA[ch] << 2) | 2);
            }
        }
    }
    StoreState(true);
    SPI_write(0x0020, x0020);
    ClockLogicResets();
    hasStopped = true;
    return status;
}