1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
#include "lms7002m_controls.h"
#include "spi.h"
#include "LMS7002M_parameters_compact.h"
#include "math.h"
#include "typedefs.h"
#include "mcu_defines.h"
#ifdef __cplusplus
#include <cmath>
#include <cstdlib>
using namespace std;
#include <chrono>
#include <thread>
#else
#include "lms7002_regx51.h" //MCU timer sfr
uint16_t gComparatorDelayCounter = 0xFF00; // ~100us @ ref 30.72MHz
#endif
#define VERBOSE 0
//TODO add functions to modify reference clock
float_type RefClk = 30.72e6; //board reference clock
uint16_t pow2(const uint8_t power)
{
return 1 << power;
}
xdata uint16_t x0020state;
ROM const uint16_t chipStateAddr[] = {
0x0021, 0x002F, //LimeLight
0x0081, 0x0082, //EN_DIR Configuration + AFE
SECTION_BIAS,
SECTION_XBUF,
SECTION_CGEN,
SECTION_LDO,
SECTION_BIST,
SECTION_CDS,
SECTION_TRF,
SECTION_TBB,
SECTION_RFE,
SECTION_RBB,
SECTION_TxTSP,
SECTION_TxNCO,
SECTION_RxTSP,
SECTION_RxNCO,
0x500, 0x5A7, //GFIR3
0x5C0, 0x5C0 //DC Calibration Configuration
};
xdata uint16_t chipStateData[500];
void SaveChipState(bool wr)
{
uint16_t dest=0;
uint8_t i;
uint16_t addr;
uint16_t ch = SPI_read(0x0020);
if(!wr)
x0020state = ch;
//for(i=0; i<sizeof(chipStateAddr)/sizeof(uint16_t); i+=2)
for(i = sizeof(chipStateAddr)/sizeof(uint16_t); i; i-=2)
{
for(addr=chipStateAddr[i-2]; addr<=chipStateAddr[i-1]; ++addr)
{
if(wr)
SPI_write(addr, chipStateData[dest]);
else
chipStateData[dest] = SPI_read(addr);
++dest;
}
}
//sxr and sxt
for(i=0; i<2; ++i)
{
SPI_write(0x0020, 0xFFFD+i);
for(addr=0x011C; addr<=0x0123; ++addr)
{
if(wr)
SPI_write(addr, chipStateData[dest]);
else
chipStateData[dest] = SPI_read(addr);
++dest;
}
}
if(wr)
{
ClockLogicResets();
SPI_write(0x0020, x0020state);
}
else
SPI_write(0x0020, ch);
}
#ifdef __cplusplus
#include <vector>
void SetDefaults(uint16_t start, uint16_t end)
{
ROM const uint16_t defaultAddrs[] = {
0x0020,0x0021,0x0022,0x0023,0x0024,0x0025,0x0026,0x0027,0x0028,0x0029,0x002A,0x002B,0x002C,0x002E,0x002F,0x0081,0x0082,0x0084,0x0085,0x0086,0x0087,0x0088,0x0089,0x008A,0x008B,0x008C,0x0092,0x0093,0x0094,0x0095,0x0096,0x0097,0x0098,0x0099,0x009A,0x009B,0x009C,0x009D,0x009E,0x009F,0x00A0,0x00A1,0x00A2,0x00A3,0x00A4,0x00A5,0x00A6,0x00A7,0x00A8,0x00AA,0x00AB,0x00AD,0x00AE,0x0100,0x0101,0x0102,0x0103,0x0104,0x0105,0x0106,0x0107,0x0108,0x0109,0x010A,0x010B,0x010C,0x010D,0x010E,0x010F,0x0110,0x0111,0x0112,0x0113,0x0114,0x0115,0x0116,0x0117,0x0118,0x0119,0x011A,0x011C,0x011D,0x011E,0x011F,0x0120,0x0121,0x0122,0x0123,0x0124,0x0125,0x0126,0x0200,0x0201,0x0202,0x0203,0x0204,0x0205,0x0206,0x0207,0x0208,0x0209,0x020A,0x020C,0x0240,0x0242,0x0243,0x0244,0x0245,0x0246,0x0247,0x0248,0x0249,0x024A,0x024B,0x024C,0x024D,0x024E,0x024F,0x0250,0x0251,0x0252,0x0253,0x0254,0x0255,0x0256,0x0257,0x0258,0x0259,0x025A,0x025B,0x025C,0x025D,0x025E,0x025F,0x0260,0x0261,0x0400,0x0401,0x0402,0x0403,0x0404,0x0405,0x0406,0x0407,0x0408,0x0409,0x040A,0x040B,0x040C,0x040E,0x0440,0x0442,0x0443,0x0444,0x0445,0x0446,0x0447,0x0448,0x0449,0x044A,0x044B,0x044C,0x044D,0x044E,0x044F,0x0450,0x0451,0x0452,0x0453,0x0454,0x0455,0x0456,0x0457,0x0458,0x0459,0x045A,0x045B,0x045C,0x045D,0x045E,0x045F,0x0460,0x0461,0x05C0,0x05C1,0x05C2,0x05C3,0x05C4,0x05C5,0x05C6,0x05C7,0x05C8,0x05C9,0x05CA,0x05CB,0x05CC,0x0600,0x0601,0x0602,0x0603,0x0604,0x0605,0x0606,0x0640,0x0641
};
ROM const uint16_t defaultValues[] = {
0xFFFF,0x0E9F,0x07DF,0x5559,0xE4E4,0x0101,0x0101,0xE4E4,0x0101,0x0101,0x0086,0x0010,0xFFFF,0x0000,0x3840,0x0000,0x800B,0x0400,0x0001,0x4901,0x0400,0x0780,0x0020,0x0514,0x2100,0x067B,0x0001,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x6565,0x658C,0x6565,0x658C,0x6565,0x658C,0x658C,0x6565,0x6565,0x6565,0x6565,0x6565,0x6565,0x000F,0x6565,0x0000,0x0000,0x0000,0x03FF,0xF000,0x3409,0x7800,0x3180,0x0A12,0x0088,0x0007,0x318C,0x318C,0x958C,0x61C1,0x104C,0x0000,0x88FD,0x009E,0x2040,0x30C6,0x0994,0x0083,0xC0E6,0x03C3,0x008D,0x0009,0x8180,0x280C,0x018C,0x528B,0x2E02,0xAD43,0x0400,0x0780,0x3640,0xB9FF,0x3404,0x033F,0x067B,0x0000,0x9400,0x12FF,0x0081,0x07FF,0x07FF,0x0000,0x0000,0x0000,0x0000,0x0000,0x0070,0x0000,0x0000,0x0000,0x0020,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0081,0x07FF,0x07FF,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x1000,0x0000,0x0038,0x0000,0x0020,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x00FF,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x2020,0x0000,0x0F00,0x0000,0x2000,0x0000,0x0000,0x0000,0x0000,0x00A0,0x1020
};
#ifdef __cplusplus
//int status = 0;
std::vector<uint16_t> addrs;
std::vector<uint16_t> values;
for(uint32_t address = start; address <= end; ++address)
{
unsigned int i=0;
for(i=0; i<sizeof(defaultAddrs)/sizeof(uint16_t); ++i)
{
if(defaultAddrs[i] == address)
{
addrs.push_back(defaultAddrs[i]);
values.push_back(defaultValues[i]);
break;
}
}
}
SPI_write_batch(addrs.data(), values.data(), addrs.size());
#else
#endif
}
#endif
void SetDefaultsSX()
{
ROM const uint16_t SXAddr[]= {0x011C, 0x011D, 0x011E, 0x011F, 0x0121, 0x0122, 0x0123};
ROM const uint16_t SXdefVals[]= {0xAD43, 0x0400, 0x0780, 0x3640, 0x3404, 0x033F, 0x067B};
uint8_t i;
for(i=sizeof(SXAddr)/sizeof(uint16_t); i; --i)
SPI_write(SXAddr[i-1], SXdefVals[i-1]);
//keep 0x0120[7:0]ICT_VCO bias value intact
Modify_SPI_Reg_bits(0x0120, MSB_LSB(15, 8), 0xB9FF);
}
void ClockLogicResets()
{
//MCLK2 toggle
uint16_t reg = SPI_read(0x002B);
SPI_write(0x002B, reg ^ (1<<9));
SPI_write(0x002B, reg);
//TSP logic reset
reg = SPI_read(0x0020);
SPI_write(0x0020, reg & ~0xAA00);
SPI_write(0x0020, reg);
}
float_type GetFrequencyCGEN()
{
const float_type dMul = (RefClk/2.0)/(Get_SPI_Reg_bits(DIV_OUTCH_CGEN)+1); //DIV_OUTCH_CGEN
const uint16_t gINT = Get_SPI_Reg_bits(0x0088, MSB_LSB(13, 0)); //read whole register to reduce SPI transfers
const uint32_t gFRAC = ((uint32_t)(gINT & 0xF) << 16) | Get_SPI_Reg_bits(0x0087, MSB_LSB(15, 0));
return dMul * (((gINT>>4) + 1 + gFRAC/1048576.0));
}
uint8_t SetFrequencyCGEN(float_type freq)
{
float_type dFvco;
float_type intpart;
//VCO frequency selection according to F_CLKH
{
uint8_t iHdiv_high = (2.94e9/2 / freq)-1;
uint8_t iHdiv_low = (1.93e9/2 / freq);
uint8_t iHdiv = (iHdiv_low + iHdiv_high)/2;
dFvco = 2 * (iHdiv+1) * freq;
Modify_SPI_Reg_bits(DIV_OUTCH_CGEN, iHdiv);
}
//Integer division
intpart = dFvco/RefClk;
Modify_SPI_Reg_bits(INT_SDM_CGEN, intpart - 1); //INT_SDM_CGEN
//Fractional division
{
const float_type dFrac = intpart - (uint32_t)(dFvco/RefClk);
const uint32_t gFRAC = (uint32_t)(dFrac * 1048576);
Modify_SPI_Reg_bits(0x0087, MSB_LSB(15, 0), gFRAC&0xFFFF); //INT_SDM_CGEN[15:0]
Modify_SPI_Reg_bits(0x0088, MSB_LSB(3, 0), gFRAC>>16); //INT_SDM_CGEN[19:16]
}
#if VERBOSE
//printf("CGEN: Freq=%g MHz, VCO=%g GHz, INT=%i, FRAC=%i, DIV_OUTCH_CGEN=%i\n", freq/1e6, dFvco/1e9, gINT, gFRAC, iHdiv);
#endif // NDEBUG
if(TuneVCO(VCO_CGEN) != 0)
return MCU_CGEN_TUNE_FAILED;
return 0;
}
float_type GetReferenceClk_TSP_MHz(bool tx)
{
const float_type cgenFreq = GetFrequencyCGEN();
const float_type clklfreq = cgenFreq/pow2(Get_SPI_Reg_bits(CLKH_OV_CLKL_CGEN));
if(Get_SPI_Reg_bits(EN_ADCCLKH_CLKGN) == 0)
return tx ? clklfreq : cgenFreq/4;
else
return tx ? cgenFreq : clklfreq/4;
}
void SetNCOFrequency(const bool tx, const float freq, uint8_t index)
{
const uint16_t addr = (tx ? 0x0242 : 0x0442)+index*2;
const uint32_t fcw = (uint32_t)((freq/GetReferenceClk_TSP_MHz(tx))*4294967296.0);
SPI_write(addr, (fcw >> 16)); //NCO frequency control word register MSB part.
SPI_write(addr+1, fcw); //NCO frequency control word register LSB part.
}
float_type GetFrequencySX(const bool Tx)
{
const uint16_t ch = SPI_read(0x0020);//(uint8_t)Get_SPI_Reg_bits(MAC); //remember previously used channel
Modify_SPI_Reg_bits(MAC, Tx ? 2 : 1); // Rx mac = 1, Tx mac = 2
{
const uint16_t gINT = Get_SPI_Reg_bits(0x011E, MSB_LSB(13, 0)); // read whole register to reduce SPI transfers
const uint32_t gFRAC = ((uint32_t)(gINT&0xF) << 16) | SPI_read(0x011D);
const uint8_t enDiv2 = Get_SPI_Reg_bits(EN_DIV2_DIVPROG)+1;
const uint8_t divLoch = Get_SPI_Reg_bits(DIV_LOCH) + 1;
SPI_write(0x0020, ch);
//Calculate real frequency according to the calculated parameters
return (enDiv2) * (RefClk / pow2(divLoch)) * ((gINT >> 4) + 4 + (gFRAC / 1048576.0));
}
}
uint8_t SetFrequencySX(const bool tx, const float_type freq_Hz)
{
int16_t tuneScore[3] = {255, 255, 255}; // best is closest to 0
const uint16_t macBck = SPI_read(0x0020);
bool canDeliverFrequency = false;
Modify_SPI_Reg_bits(MAC, tx?2:1);
//find required VCO frequency
{
float_type VCOfreq;
float_type temp;
{
uint8_t div_loch;
for (div_loch = 7; div_loch; --div_loch)
{
VCOfreq = pow2(div_loch) * freq_Hz;
if ((VCOfreq >= 3800e6) && (VCOfreq <= 7714e6))
break;
}
Modify_SPI_Reg_bits(DIV_LOCH, div_loch-1);
}
{
uint32_t fractionalPart;
const uint8_t enDiv2 = (VCOfreq > 5500e6) ? 1 : 0;
Modify_SPI_Reg_bits(EN_DIV2_DIVPROG, enDiv2); //EN_DIV2_DIVPROG
temp = VCOfreq / (RefClk * (1 + enDiv2));
fractionalPart = (uint32_t)((temp - (uint32_t)(temp)) * 1048576);
Modify_SPI_Reg_bits(INT_SDM, (uint16_t)(temp - 4)); //INT_SDM
Modify_SPI_Reg_bits(0x011E, MSB_LSB(3, 0), (fractionalPart >> 16)); //FRAC_SDM[19:16]
SPI_write(0x011D, fractionalPart & 0xFFFF); //FRAC_SDM[15:0]
}
}
while(1)
{
uint8_t sel_vco;
uint8_t bestvco = 0;
for (sel_vco = 0; sel_vco < 3; ++sel_vco)
{
Modify_SPI_Reg_bits(SEL_VCO, sel_vco);
if( TuneVCO(1) == MCU_NO_ERROR)
{
tuneScore[sel_vco] = Get_SPI_Reg_bits(CSW_VCO)-128;
canDeliverFrequency = true;
}
if(abs(tuneScore[sel_vco]) < abs(tuneScore[bestvco]))
bestvco = sel_vco;
}
if(canDeliverFrequency)
{
Modify_SPI_Reg_bits(SEL_VCO, bestvco);
Modify_SPI_Reg_bits(CSW_VCO, tuneScore[bestvco] + 128);
break;
}
{
uint16_t bias = Get_SPI_Reg_bits(ICT_VCO);
if(bias == 255)
break;
Modify_SPI_Reg_bits(ICT_VCO, bias + 32 > 255 ? 255 : bias + 32);
}
}
SPI_write(0x0020, macBck);
if (canDeliverFrequency == false)
return tx ? MCU_SXT_TUNE_FAILED : MCU_SXR_TUNE_FAILED;
return MCU_NO_ERROR;
}
/** @brief Performs VCO tuning operations for CLKGEN, SXR, SXT modules
@param module module selection for tuning 0-cgen, 1-SXR, 2-SXT
@return 0-success, other-failure
*/
static uint8_t ReadCMP(const bool SX)
{
#ifdef __cplusplus
std::this_thread::sleep_for(std::chrono::microseconds(100));
#else
TR0 = 0; //stop timer 0
TH0 = (gComparatorDelayCounter >> 8);
TL0 = (gComparatorDelayCounter & 0xFF);
TF0 = 0; // clear overflow
TR0 = 1; //start timer 0
while( !TF0 ); // wait for timer overflow
#endif
return (uint8_t)Get_SPI_Reg_bits(SX ? 0x0123 : 0x008C, MSB_LSB(13, 12));
}
uint8_t TuneVCO(bool SX) // 0-cgen, 1-SXR, 2-SXT
{
typedef struct
{
uint8_t high;
uint8_t low;
uint8_t hasLock;
} CSWInteval;
uint16_t addrCSW_VCO;
uint8_t msblsb;
CSWInteval cswSearch[2];
cswSearch[0].high = 0; //search interval lowest value
cswSearch[0].low = 127;
cswSearch[1].high = 128;
cswSearch[1].low = 255;
cswSearch[1].hasLock = cswSearch[0].hasLock = false;
if(SX)
{
addrCSW_VCO = 0x0121;
msblsb = MSB_LSB(10, 3); //CSW msb lsb
//assuming the active channel is already correct
Modify_SPI_Reg_bits(0x011C, MSB_LSB(2, 1), 0); //activate VCO and comparator
}
else //CGEN
{
addrCSW_VCO = 0x008B;
msblsb = MSB_LSB(8, 1); //CSW msb lsb
Modify_SPI_Reg_bits(0x0086, MSB_LSB(2, 1), 0); //activate VCO and comparator
}
#ifndef __cplusplus
gComparatorDelayCounter = 0xFFFF - (uint16_t)((0.0009/12)*RefClk); // ~900us
#endif
//check if lock is within VCO range
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, 0);
if(ReadCMP(SX) == 3) //VCO too high
return MCU_ERROR;
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, 255);
if(ReadCMP(SX) == 0) //VCO too low
return MCU_ERROR;
//search intervals [0-127][128-255]
{
uint8_t t;
for(t=0; t<2; ++t)
{
uint8_t mask;
for(mask = (1 << 6); mask; mask >>= 1)
{
uint8_t cmpValue;
cswSearch[t].high |= mask; // CSW_VCO<i>=1
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, cswSearch[t].high);
cmpValue = ReadCMP(SX);
if(cmpValue == 0x03) // reduce CSW
cswSearch[t].high ^= mask; // CSW_VCO<i>=0
else if(cmpValue == 0x02 && cswSearch[t].high <= cswSearch[t].low)
{
cswSearch[t].hasLock = true;
cswSearch[t].low = cswSearch[t].high;
}
}
for(; cswSearch[t].low; --cswSearch[t].low)
{
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, cswSearch[t].low);
if(ReadCMP(SX) != 0x2)
{
if(cswSearch[t].low < cswSearch[t].high)
++cswSearch[t].low;
break;
}
}
}
}
{
uint8_t cswValue;
//compare which interval is wider
{
if(cswSearch[1].hasLock && (cswSearch[1].high-cswSearch[1].low >= cswSearch[0].high-cswSearch[0].low))
cswValue = cswSearch[1].low +((cswSearch[1].high-cswSearch[1].low) >> 1);
else
cswValue = cswSearch[0].low +((cswSearch[0].high-cswSearch[0].low) >> 1);
}
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, cswValue);
if(ReadCMP(SX) != 0x2) //just in case high-low==1, if low fails, check if high locks
Modify_SPI_Reg_bits(addrCSW_VCO, msblsb, ++cswValue);
}
if(ReadCMP(SX) == 0x2)
return MCU_NO_ERROR;
return MCU_ERROR;
}
void WriteMaskedRegs(const RegisterBatch ROM* regs)
{
uint8_t i;
uint8_t index;
for(i=regs->cnt; i; --i)
{
index = i-1;
SPI_write(regs->addr[index], ( SPI_read(regs->addr[index]) & ~regs->mask[index] ) | regs->val[index]);
}
for(i=regs->wrOnlyAddrCnt; i; --i)
{
index = i-1;
SPI_write(regs->wrOnlyAddr[index], i > regs->wrOnlyDataCnt ? 0 : regs->wrOnlyData[index]);
}
}
uint8_t GetValueOf_c_ctl_pga_rbb(uint8_t g_pga_rbb)
{
if(g_pga_rbb < 21)
return 1;
if(g_pga_rbb < 13)
return 2;
if(g_pga_rbb < 8)
return 3;
return 0;
}
void EnableChannelPowerControls()
{
uint16_t afe = SPI_read(0x0082);
uint16_t value = SPI_read(0x0020);
if((value & 3) == 1)
{
value = value | 0x0014;
afe &= ~0x14;
}
else
{
value = value | 0x0028;
afe &= ~0x0A;
}
SPI_write(0x0020, value);
SPI_write(0x0082, afe);
}
void EnableMIMOBuffersIfNecessary()
{
//modifications when calibrating channel B
uint16_t x0020val = SPI_read(0x0020);
if( (x0020val&0x3) == 2)
{
Modify_SPI_Reg_bits(MAC, 1);
Modify_SPI_Reg_bits(EN_NEXTRX_RFE, 1);
Modify_SPI_Reg_bits(EN_NEXTTX_TRF, 1);
SPI_write(0x0020, x0020val);
}
}
|