1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
* examples/samplebb.C
*
* Copyright (C) 2005, 2010 D Saunders
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
/** \file examples/samplebb.C
* @example examples/samplebb.C
* \ingroup examples
* \brief generate an example matrix with specified frobenius form.
*
* samplebb takes options and any number of argument triples denoting companion
* matrix blocks.
* For example, the call "samplebb -r 7 2 3 a3 1 1" generates a sparsely
* randomized matrix (because of the '-r' option) matrix which is similar
* (because of the two triples '7 2 3' and 'a2 1 1') to a direct sum of 3
* companion matrices for (x-7)^2 plus one companion matrix for x^3 + x + 2, the
* polynomial denoted by 'a3'.
*
* In general, in the first position of each triple 'aK' denotes the polynomial
* x^k + x + K-1 and a number n denotes the polynomial x-n. The second number
* in the triple specifies a power of the polynomial and the third specifies how
* many companion matrix blocks for that power of that polynomial.
*
* Possible options are
* -r lightly randomized similarity transform, matrix remains sparse.
* -R fully randomized similarity transform, matrix becomes dense.
*
* The matrix is written to standard out in SMS format (triples).
*
* For some other examples:
* "samplebb 1 1 2 2 1 2 4 1 2 12 1 1 0 1 1" is a 8 by 8 diagonal matrix in smith form,
* diag(1,1,2,2,4,4,12,0)
*
*/
#include <iostream>
#include <string>
#include <list>
#include <vector>
#include <linbox/blackbox/direct-sum.h>
#include <linbox/blackbox/companion.h>
#include <linbox/algorithms/matrix-hom.h>
#include <linbox/ring/ntl.h>
#include <NTL/ZZX.h>
#include <linbox/vector/blas-vector.h>
using std::string;
using std::list;
using LinBox::Companion;
using LinBox::DirectSum;
using LinBox::DenseMatrix;
using LinBox::NTL_ZZ;
using NTL::ZZX;
void stripOptions(int& acp, char* avp[], string& opts, const int ac, char** av)
{
acp = 0;
for (int i = 1; i < ac; ++i)
{
//std::cout << av[i] << " ";
if (av[i][0] == '-') {
for (const char* j = av[i]+1; *j != 0; ++j)
opts.push_back(*j);
}
else {
avp[acp] = av[i];
++acp;
}
}
}
template <class List, class Ring>
void augmentBB(List& L, char* code, int e, int k, const Ring& R)
{
typedef typename Ring::Element Int;
Int a;
ZZX p;
// build poly p
if ( *code != 'a') // build linear poly
{
R.init(a, -atoi(code));
p += ZZX(0, a);
p += ZZX(1, R.one);
}
else // build long poly
{
int n = atoi(code+1);
R.init(a, n-1);
p += ZZX(n, R.one);
p += ZZX(1, R.one);
p += ZZX(0, a);
}
//std::cout << "(code, e, k) =(" << code << ", " << e << ", " << k << ")" << std::endl;
//std::cout << "Correspoding poly: " << p << std::endl;
// compute q = p^e
ZZX q(0, R.one);
for(int i = 0; i < e; ++i) q *= p;
//std::cout <<"Polynomial: " << q << std::endl;
LinBox::DenseVector<Ring> v(R,deg(q)+1);
for (int i = 0; i < v.size(); ++i) v[i] = coeff(q, i);
// companion matrix of q
Companion<Ring>* C = new Companion<Ring>(R, v);
for(int i = 0; i < k; ++i) L.push_back(C);
}
template < class Ring >
void scramble(DenseMatrix<Ring>& M)
{
Ring R = M.field();
int N,n = M.rowdim(); // number of random basic row and col ops.
N = 2*n;
for (int k = 0; k < N; ++k) {
int i = rand()%M.rowdim();
int j = rand()%M.coldim();
if (i == j) continue;
// M*i += alpha M*j and Mj* -= alpha Mi*
typename Ring::Element alpha, beta, x;
R.init(alpha, rand()%5 - 2);
R.neg(beta, alpha);
for (size_t l = 0; l < M.rowdim(); ++l) if (!R.isZero(alpha)) {
R.mul(x, alpha, M[l][j]);
R.addin(M[l][i], x);
}
for (size_t l = 0; l < M.rowdim(); ++l) if (!R.isZero(alpha)) {
R.mul(x, beta, M[i][l]);
R.addin(M[j][l], x);
}
}
/*
std::ofstream out("matrix", std::ios::out);
//M. write(std::cout);
out << n << " " << n << "\n";
for (int i = 0; i < n; ++ i) {
for ( int j = 0; j < n; ++ j) {
R. write(out, M[i][j]);
out << " ";
}
out << "\n";
}
*/
}
template <class Matrix>
void printMatrix (const Matrix& A)
{
int m = A. rowdim();
int n = A. coldim();
typedef typename Matrix::Field Ring;
typedef typename Ring::Element Element;
const Ring &r = A.field();
LinBox::DenseVector<Ring> x(r,m), y(r,n);
std::cout << m << " " << n << " M" << std::endl;
typename LinBox::DenseVector<Ring>::iterator y_p;
for (int i = 0; i < m; ++ i) {
r. assign (x[i], r.one);
A. applyTranspose(y, x);
for(y_p = y. begin(); y_p != y. end(); ++ y_p)
if (! r.isZero(*y_p))
std::cout << i+1 << " " << y_p - y.begin() + 1 << " " << *y_p << std::endl;
r. assign (x[i], r.zero);
}
std::cout << "0 0 0" << std::endl;
}
int main(int ac, char* av[])
{
if (ac < 2)
{ std::cout << "usage: " << av[0] <<
" options block-groups." << std::endl;
std::cout << av[0] << " -r 1 2 3 a4 1 1" << std::endl;
std::cout <<
"for lightly randomized matrix similar to direct sum of 3 copies of companion " << std::endl
<< "matrix of (x-1)^2 and one copy of companion matrix of (x^4 + x + 3)^1." << std::endl;
}
typedef NTL_ZZ Ring;
Ring Z;
typedef Companion<Ring> BB;
int acp; char* avp[ac];
string opts;
stripOptions(acp, avp, opts, ac, av);
//std::cout << "number of triples: " << acp << std::endl;
//for (int i = 0; i < acp; ++ i)
// std::cout << avp[i];
//std::cout << std::endl;
//std::cout << "Begin to ....\n";
list<BB*> L;
for (int i = 0; i < acp; i += 3)
augmentBB(L, avp[i], atoi(avp[i+1]), atoi(avp[i+2]), Z);
DirectSum<BB> A(L);
//std::cout <<"Option: " << opts.c_str() << std::endl;
if (opts.size() >= 1)
{ if (opts[0] == 'r')
{
// into sparse matrix, then 3n row ops with corresponding col ops
DenseMatrix<Ring> B(Z,A.rowdim(), A.coldim());
//MatrixDomain<Ring> MD(Z);
LinBox::MatrixHom::map (B, A);
scramble(B);
printMatrix(B);
// delete B;
}
if (opts[0] == 'R') { throw LinBox::NotImplementedYet(); }
// into dense matrix, then many row ops
//...
}
else {
printMatrix (A);
}
return 0 ;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|