File: dixonsolve.C

package info (click to toggle)
linbox 1.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,940 kB
  • sloc: cpp: 108,392; lisp: 5,469; makefile: 1,345; sh: 1,244; csh: 131; python: 74; perl: 2
file content (267 lines) | stat: -rw-r--r-- 8,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/* Copyright (C) The LinBox group
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/**\file examples/dixonsolve.C
 @example examples/dixonsolve.C
 @author Jean-Guillaume.Dumas@univ-grenoble-alpes.fr
 @author Romain.Lebreton@umontpellier.fr
 * \brief Dixon System Solving via Lifting using dense LU or sparse LU
 * \ingroup examples
 */
#include <iostream>

#include "linbox/algorithms/rational-solver.h"
#include "linbox/solutions/methods.h"
#include "linbox/solutions/solve.h"
#include "linbox/util/args-parser.h"
#include "linbox/util/error.h"
#include "linbox/util/matrix-stream.h"
#include "linbox/randiter/random-prime.h"
#include <givaro/givrandom.h>

// DenseLU
#include "linbox/matrix/dense-matrix.h"

// SparseElim
#include "linbox/matrix/sparse-matrix.h"

using namespace LinBox;
typedef Givaro::ZRing<Givaro::Integer> Ints;
typedef DenseVector<Ints> ZVector;


template<typename _Matrix, typename _EliminationMethod>
int test(_Matrix A, std::string vector_file, bool inv, bool pp, bool sparse_elim) {
    // TODO : git rm dixondenseLU dixonsparseelim

    std::cout << "A is " << A.rowdim() << " by " << A.coldim() << std::endl;

    if (pp)
    {
            // Print Matrix

            // Matrix Market
            // std::cout << "A is " << A << std::endl;

            // Maple
        A.write(std::cout << "A:=", Tag::FileFormat::Maple) << ';' << std::endl;
    }

        // Vector File
    Ints ZZ;
    std::ifstream invect;

    ZVector B(ZZ, A.rowdim());

    bool createB = vector_file.empty();
    if (!createB) {
        invect.open (vector_file, std::ifstream::in);
        if (!invect) {
            createB = true;
        } else {
            for(ZVector::iterator it=B.begin(); it != B.end(); ++it)
                invect >> *it;
        }
    }

        // Vectors
    ZVector X(ZZ, A.coldim());

    if (createB) {
        ZVector U(ZZ, A.coldim());
        Givaro::GivRandom bgen( BaseTimer::seed() );
        if (inv) {
            std::cerr << "Creating a random {-1,1} vector " << std::endl;
            for(auto& it:B) it = (bgen.brand()?1:-1);
        } else {
            std::cerr << "Creating a random consistant {-1,1} vector " << std::endl;
            for(FFPACK::rns_double::integer& it:U) it = (bgen.brand()?1:-1);

            // B = A U
            A.apply(B,U);
        }
    }

    if(pp)
    {
            // Print RHS
        B.write(std::cout << "B:=", Tag::FileFormat::Maple) << ';' << std::endl;
    }

    std::cout << "B is " << B.size() << "x1" << std::endl;

    Timer chrono;

        // BlasElimination
    // TODO : à vérifier si cela marche avec Method::DenseElimination
    _EliminationMethod M;
    if (inv){
        M.singularity = Singularity::NonSingular;
    }


        //====================================================
        // BEGIN Replacement solve with fixed prime

    Ints::Element d;
    Method::Dixon m(M);
    typedef Givaro::Modular<double> Field;

    const size_t bitsize((size_t) FieldTraits<Field>::bestBitSize(A.rowdim()));
    Givaro::Integer randomPrime( *(PrimeIterator<>(bitsize)) );

    FixedPrimeIterator fixedprime( randomPrime );
    DixonSolver<Ints, Field, FixedPrimeIterator, _EliminationMethod> rsolve(A.field(), fixedprime);
    std::cout << "Using: " << *fixedprime << " as the fixed p-adic." << std::endl;

    chrono.start();
    if (!sparse_elim){
            // Dense Elimination
        if (inv)
        {
            std::cout << "Solving using Dense Elimination for non singular system" << std::endl;
            SolverReturnStatus ss = rsolve.solveNonsingular(X, d, A, B);
            if (ss != SS_OK) {
                std::cerr << "Error during solveNonsingular (possibly singular matrix or p-adic precision too small)" << std::endl;
                exit(-1);
            }
        }
        else
        {
            std::cout << "Solving using Dense Elimination for any system" << std::endl;
            SolverReturnStatus ss = rsolve.solve(X, d, A, B);
            if (ss == SS_FAILED){
                std::cerr << "Error during solve (all primes used were bad)" << std::endl;
                exit(-1);
            }
            if (ss == SS_INCONSISTENT){
                std::cerr << "Error: system appeared inconsistent" << std::endl;
                exit(-1);
            }
        }
    } else {
            // Sparse Elimination
        try
        {
            std::cout << "Solving using Sparse Elimination for any system" << std::endl;
            rsolve.solve(X, d, A, B);
        }
        catch(LinboxError& e)
        {
            std::cerr << e << '\n';
            exit(-1);
        }
    }
    chrono.stop();

    std::cout << "CPU time (seconds): " << chrono.usertime() << std::endl;

    {
            // Solution size

        std::cout<<"Reduced solution: \n";
        size_t maxbits=0;
        for (size_t i=0;i<A.coldim();++i){
            maxbits=(maxbits > X[i].bitsize() ? maxbits: X[i].bitsize());
        }
        std::cout<<" numerators of size   "<<maxbits<<" bits" << std::endl
                 <<" denominators hold over "<<d.bitsize()<<" bits\n";
    }


    {
			// Check Solution

        VectorDomain<Ints> VD(ZZ);
        MatrixDomain<Ints> MD(ZZ);
        ZVector LHS(ZZ, A.rowdim()), RHS(ZZ, B);
            // check that Ax = d.b
        MD.vectorMul(LHS, A, X);
        VD.mulin(RHS, d);
        if (VD.areEqual(LHS, RHS))
            std::cout << "Ax=d.b : Yes" << std::endl;
        else
            std::cout << "Ax=d.b : No" << std::endl;
    }

    {
            // Print Solution

        std::cout << "Solution is [";
        for(auto it:X) ZZ.write(std::cout, it) << " ";
        std::cout << "] / ";
        ZZ.write(std::cout, d)<< std::endl;
    }
    return 0;
}

int main (int argc, char **argv) {

    // TODO : seed ?
    std::string matrix_file = "";
    std::string vector_file = "";
    bool inv = false;
    bool pp = false;
    bool sparse_elim = false;


    Argument as[] = {
        { 'm', "-m FILE", "Set the input file for the matrix.",  TYPE_STR , &matrix_file },
        { 'v', "-v FILE", "Set the input file for the vector.",  TYPE_STR , &vector_file },
        { 'i', "-i"     , "whether the matrix is known to be invertible.",  TYPE_BOOL , &inv },
        { 'p', "-p"     , "whether you want to pretty print the matrix.",  TYPE_BOOL , &pp },
        { 's', "-s"     , "whether to use sparse elimination.",  TYPE_BOOL , &sparse_elim },
        END_OF_ARGUMENTS
    };

    FFLAS::parseArguments(argc,argv,as);

    // Matrix File
    if (matrix_file.empty()) {
        std::cerr << "You must specify an input file for the matrix with -m" << std::endl;
        exit(-1);
    }
    std::ifstream input (matrix_file);
    if (!input) { std::cerr << "Error opening matrix file " << argv[1] << std::endl; exit(-1); }


        // Read Integral matrix from File
    Ints ZZ;
    MatrixStream< Ints > ms( ZZ, input );

    if (sparse_elim){
        SparseMatrix<Ints> A(ms);
        return test<SparseMatrix<Ints>,Method::SparseElimination>
            (A, vector_file, inv , pp, sparse_elim);
    } else {
        DenseMatrix<Ints> A(ms);
        return test<DenseMatrix<Ints>,Method::DenseElimination>
            (A, vector_file, inv , pp, sparse_elim);
    }
}


// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s