1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
* examples/matrices.h
*
* Copyright (C) 2017-2019 D. Saunders, Z. Wang, J-G Dumas
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
#ifndef __LinBox_Matrices_H_
#define __LinBox_Matrices_H_
#include <linbox/matrix/dense-matrix.h>
template < class Ring >
void scramble(LinBox::DenseMatrix<Ring>& M)
{
Ring R = M.field();
int N,n = (int)M.rowdim(); // number of random basic row and col ops.
N = n;
for (int k = 0; k < N; ++k) {
int i = rand()%(int)M.rowdim();
int j = rand()%(int)M.coldim();
if (i == j) continue;
// M*i += alpha M*j and Mi* += beta Mj
//int a = rand()%2;
int a = 0;
for (size_t l = 0; l < M.rowdim(); ++l) {
if (a)
R.subin(M[(size_t)l][(size_t)i], M[(size_t)l][(size_t)j]);
else
R.addin(M[(size_t)l][(size_t)i], M[(size_t)l][(size_t)j]);
//K.axpy(c, M.getEntry(l, i), x, M.getEntry(l, j));
//M.setEntry(l, i, c);
}
//a = rand()%2;
for (size_t l = 0; l < M.coldim(); ++l) {
if (a)
R.subin(M[(size_t)i][l], M[(size_t)j][l]);
else
R.addin(M[(size_t)i][l], M[(size_t)j][l]);
}
}
}
// This mat will have s, near sqrt(n), distinct invariant factors,
// each repeated twice), involving the s primes 101, 103, ...
template <class PIR>
void RandomRoughMat(LinBox::DenseMatrix<PIR>& M, PIR& R, int n) {
if (n > 10000) {std::cerr << "n too big" << std::endl; exit(-1);}
int jth_factor[130] =
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733};
for (int j= 0, i = 0 ; i < n; ++j)
{
typename PIR::Element v; R.init(v, jth_factor[25+j]);
for (int k = j ; k > 0 && i < n ; --k)
{ M[(size_t)i][(size_t)i] = v; ++i;
if (i < n) {M[(size_t)i][(size_t)i] = v; ++i;}
}
}
scramble(M);
}
// This mat will have the same nontrivial invariant factors as
// diag(1,2,3,5,8, ... 999, 0, 1, 2, ...).
template <class PIR>
void RandomFromDiagMat(LinBox::DenseMatrix<PIR>& M, PIR& R, int n) {
for (int i= 0 ; i < n; ++i)
R.init(M[(size_t)i][(size_t)i], i % 1000 + 1);
scramble(M);
}
// This mat will have the same nontrivial invariant factors as
// diag(1,2,3,5,8, ... fib(k)), where k is about sqrt(n).
// The basic matrix is block diagonal with i-th block of order i and
// being a tridiagonal {-1,0,1} matrix whose snf = diag(i-1 1's, fib(i)),
// where fib(1) = 1, fib(2) = 2. But note that, depending on n,
// the last block may be truncated, thus repeating an earlier fibonacci number.
template <class PIR>
void RandomFibMat(LinBox::DenseMatrix<PIR>& M, PIR& R, int n) {
typename PIR::Element pmone; R.assign(pmone, R.one);
for (int i= 0 ; i < n; ++i) M[(size_t)i][(size_t)i] = R.one;
int j = 1, k = 0;
for (int i= 0 ; i < n-1; ++i) {
if ( i == k) {
M[(size_t)i][(size_t)i+1] = R.zero;
k += ++j;
}
else {
M[(size_t)i][(size_t)i+1] = pmone;
R.negin(pmone);
}
R.neg(M[(size_t)i+1][(size_t)i], M[(size_t)i][(size_t)i+1]);
}
scramble(M);
}
//////////////////////////////////
// special matrices tref and krat
#include <givaro/givintprime.h>
// Trefethen's challenge #7 mat (primes on diag, 1's on 2^e bands).
template <class PIR>
void TrefMat(LinBox::DenseMatrix<PIR>& M, PIR& R, int n) {
std::vector<int> power2;
int i = 1;
do {
power2. push_back(i);
i *= 2;
} while (i < n);
Givaro::IntPrimeDom IPD; Givaro::Integer prime(1);
for ( i = 0; i < n; ++ i) {
R.init( M[(size_t)i][(size_t)i], IPD.nextprimein(prime) );
}
std::vector<int>::iterator p;
for ( i = 0; i < n; ++ i) {
for ( p = power2. begin(); (p != power2. end()) && (*p <= i); ++ p)
M[(size_t)i][(size_t)(i - *p)] = 1;
for ( p = power2. begin(); (p != power2. end()) && (*p < n - i); ++ p)
M[(size_t)i][(size_t)(i + *p)] = 1;
}
}
//// end tref /////// begin krat /////////////////////////////
struct pwrlist
{
std::vector<Givaro::Integer> m;
pwrlist(Givaro::Integer q)
{ m.push_back(1); m.push_back(q);
//cout << "pwrlist " << m[0] << " " << m[1] << endl;
}
Givaro::Integer operator[](int e)
{
for (int i = (int)m.size(); i <= e; ++i) m.push_back(m[1]*m[(size_t)i-1]);
return m[(size_t)e];
}
};
// Read "1" or "q" or "q^e", for some (small) exponent e.
// Return value of the power of q at q = _q.
template <class num>
num& qread(num& Val, pwrlist& M, std::istream& in)
{
char c;
in >> c; // next nonwhitespace
if (c == '0') return Val = 0;
if (c == '1') return Val = 1;
if (c != 'p' && c != 'q') { std::cerr << "exiting due to unknown char " << c << std::endl; exit(-1);}
in.get(c);
if (c !='^') {in.putback(c); return Val = M[1];}
else
{ int expt; in >> expt;
return Val = M[expt];
};
}
template <class PIR>
void KratMat(LinBox::DenseMatrix<PIR>& M, PIR& R, int q)
{
M.resize((size_t)q, (size_t)q, R.zero);
pwrlist pwrs(q);
for (unsigned int i = 0; i < M.rowdim(); ++ i)
for ( unsigned int j = 0; j < M.coldim(); ++ j) {
int Val;
qread(Val, pwrs, std::cin);
R. init (M[(size_t)i][(size_t)j], Val);
}
}
///// end krat ////////////////////////////
template <class PIR>
void MolerMat(LinBox::DenseMatrix<PIR>& A, PIR& R, int n)
{
A.resize((size_t)n, (size_t)n, R.zero);
typename PIR::Element tmp; R.init(tmp);
std::cout << A.rowdim() << 'x' << A.coldim() << std::endl;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j)
A.setEntry( i, j, R.init(tmp, j-1) );
A.setEntry(i,i, R.init(tmp, i+1) );
for (int j = i+1; j < n; ++j)
A.setEntry( i, j, R.init(tmp, i-1) );
}
}
// n-by-n matrix of 0's and 1's defined by
// A(i,j) = 1, if j = 1 or if i divides j,
// and A(i,j) = 0 otherwise.
template <class PIR>
void RedhefferMat(LinBox::DenseMatrix<PIR>& A, PIR& R, int n)
{
A.resize((size_t)n, (size_t)n, R.zero);
for (int i = 0; i < n; ++i) {
A.setEntry(i,0, R.one);
for (int j = 1; j < n; ++j)
if ( ((j+1)%(i+1)) == 0 )
A.setEntry( i, j, R.one );
}
}
#endif
|