File: smithsparse.C

package info (click to toggle)
linbox 1.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,940 kB
  • sloc: cpp: 108,392; lisp: 5,469; makefile: 1,345; sh: 1,244; csh: 131; python: 74; perl: 2
file content (358 lines) | stat: -rw-r--r-- 10,986 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
 * examples/smithsparse.C
 *
 * Copyright (C) 2005, 2010  D. Saunders, Z. Wang, J-G Dumas
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/** \file examples/smithsparse.C
 * @example  examples/smithsparse.C
 \brief Smith form by sparse elmination, Integer Smith by valence method, or local at a prime power. 
 \ingroup examples

 See smithvalence for valence method with more options and information.

 For local smith, moduli greater than 2^32 are not supported here (easily changed).
 matrix is read from file or generated from a small selection of example families.
 Run the program with no arguments for a synopsis of the
 command line parameters.

*/

#include <linbox/linbox-config.h>

#include <iostream>
#include <string>
#include <vector>
#include <list>

using namespace std;


#include <linbox/ring/modular.h>
#include <linbox/matrix/sparse-matrix.h>
#include <linbox/algorithms/smith-form-sparseelim-local.h>
#include <linbox/algorithms/smith-form-sparseelim-poweroftwo.h>


#include <linbox/util/timer.h>

#include <linbox/ring/pir-modular-int32.h>
#include <linbox/algorithms/smith-form-valence.h>

// #define SILENT 
// #define NOT_USING_OMP
// #include "smithvalence.h"
// #undef NOT_USING_OMP
// #undef SILENT 

using namespace LinBox;

template<class I1, class Lp> void distinct (I1 a, I1 b, Lp& c);
template <class I> void display(I b, I e);
template<class Int_type, class Ring_type = Givaro::ZRing<Int_type> >
void runpoweroftworank(ifstream& input, const size_t exponent, size_t StPr);

int main(int argc, char* argv[])
{
	Givaro::Timer chrono; 

	if (argc < 2 or 3 < argc) {
		cout <<
"Usage: " << /*argv[0] <<*/ "smithsparse file [m]"  << endl <<
"  where file contains the matrix in any supported format and m is the modulus." << endl <<
"  With no m, Smith form over Z by the valence method is done." << endl <<
"  Use smithvalence.C to have more options and get more output info." << endl <<
"  Given m, a prime power, local Smith form over Z_m is done via sparse elim." << endl <<
"  Use power_ranks.C or poweroftwo_rank.C to have more options and get more output info." << endl <<
"  See matrices.C for some examples that have been used in smith form algorithm testing" << endl;
		return 0;
	}

	chrono.start();
	ifstream input(argv[1]);

	if (argc > 2) { // so over Z_m
		uint64_t m = atoi(argv[2]);
		if (m > 4967296) {// too big
			cerr << "Modulus too large for this example" << endl;
			return -1;
		} 
		if (m%2 == 0) { // local at small power of 2.
            //runpoweroftworank<uint64_t, Givaro::ZRing<int64_t> >(input, 32, 0);
            runpoweroftworank<size_t, Givaro::ZRing<size_t> >(input, 32, 0);
		} else {  // local at general Z_p^e

			typedef Givaro::Modular<int32_t> SPIR;
			SPIR R(m);

			SparseMatrix<SPIR, SparseMatrixFormat::SparseSeq > B (R);
			B.read(input);

		
		//	cout << "matrix is " << B.rowdim() << " by " << B.coldim() << endl;
		//	if (B.rowdim() <= 10 && B.coldim() <= 10) B.write(cout) << endl;

			Integer p(m), im(m);
                // Should better ask user to give the prime !!!
    		Givaro::IntPrimeDom IPD;
			for(unsigned int k = 2; ( ( ! IPD.isprime(p) ) && (p > 1) ); ++k)
       			Givaro::root( p, im, k );

    		// using Sparse Elimination
			LinBox::PowerGaussDomain< SPIR > PGD( R );
			vector<pair<SPIR::Element,size_t> > vec;
    		LinBox::Permutation<SPIR> Q(R,B.coldim());

			PGD(vec, B, Q, (int32_t)m, (int32_t)p);

			typedef list< SPIR::Element > List;
			List L;
			for ( auto p_it = vec.begin(); p_it != vec.end(); ++p_it) {
				for(size_t i = 0; i < (size_t) p_it->first; ++i)
					L.push_back((SPIR::Element)p_it->second);
			}
			size_t M = (B.rowdim() > B.coldim() ? B.coldim() : B.rowdim());
// 			size_t Min = (B.rowdim() < B.coldim() ? B.coldim() : B.rowdim());
			for (size_t i = L.size(); i < M; ++i)
				L.push_back(0);

			list<pair<SPIR::Element, size_t> > pl;

			distinct(L.begin(), L.end(), pl);

			//cout << "#";

        	 //display(local.begin(), local.end());
			display(pl.begin(), pl.end());
			//cout << "# local, PowerGaussDomain<int32_t>(" << M << "), n = " << Min << endl;


			chrono.stop();
			cout << "T" << M << "local(PowerGaussDomain<int32_t>)" << m << " := "
				<< chrono << endl;
		}
		

	} else {// argc is 2, so use valence method over ZZ

		Givaro::ZRing<Integer> ZZ;
		typedef SparseMatrix<Givaro::ZRing<Integer> >  Blackbox;
		Blackbox A (ZZ);
		A.read(input);
	
	//	cout << "A is " << A.rowdim() << " by " << A.coldim() << endl;
	
		Givaro::ZRing<Integer>::Element val_A;
	
		chrono.start();
		Transpose<Blackbox> T(&A);
		if (A.rowdim() > A.coldim()) {//ata
			Compose< Transpose<Blackbox>, Blackbox > C (&T, &A);
		//	cout << "A^T A is " << C.rowdim() << " by " << C.coldim() << endl;
			valence(val_A, C);
		}
		else if (A.rowdim() < A.coldim()) {//aat
			Compose< Blackbox, Transpose<Blackbox> > C (&A, &T);
		//	cout << "A A^T is " << C.rowdim() << " by " << C.coldim() << endl;
			valence(val_A, C);
		}
		else { // square, just a
			valence(val_A, A);
		}
	
		//cout << "Valence is " << val_A << endl;
	
		vector<integer> Moduli;
		vector<size_t> exponents;
	 	Givaro::IntFactorDom<> FTD;
	
		typedef pair<integer,uint64_t> PairIntRk;
		vector< PairIntRk > smith;
	
	
		integer coprimeV=2;
		while ( gcd(val_A,coprimeV) > 1 ) {
			FTD.nextprimein(coprimeV);
		}
	
		//cout << "integer rank: " << endl;
	
		size_t coprimeR; LRank(coprimeR, argv[1], coprimeV);
		smith.emplace_back(coprimeV, coprimeR);
		//         cerr << "Rank mod " << coprimeV << " is " << coprimeR << endl;
	
		//cout << "Some factors (5000 factoring loop bound): ";
		FTD.set(Moduli, exponents, val_A, 5000);
		vector<size_t>::const_iterator eit=exponents.begin();
		//for(vector<integer>::const_iterator mit=Moduli.begin();
		//    mit != Moduli.end(); ++mit,++eit)
		//	cout << *mit << '^' << *eit << ' ';
		//cout << endl;
	
		vector<integer> SmithDiagonal(coprimeR,integer(1));
	
		for(vector<integer>::const_iterator mit=Moduli.begin();
		    mit != Moduli.end(); ++mit) {
			size_t r; LRank(r, argv[1], *mit);
			//             cerr << "Rank mod " << *mit << " is " << r << endl;
			smith.emplace_back(*mit, r);
			for(size_t i=r; i < coprimeR; ++i)
				SmithDiagonal[i] *= *mit;
		}
	
	
		eit=exponents.begin();
		vector<PairIntRk>::const_iterator sit=smith.begin();
		for( ++sit; sit != smith.end(); ++sit, ++eit) {
			if (sit->second != coprimeR) {
				vector<size_t> ranks;
				ranks.push_back(sit->second);
	            size_t effexp;
				if (*eit > 1) {
					PRank(ranks, effexp, argv[1], sit->first, *eit, coprimeR);
				}
				else {
					PRank(ranks, effexp, argv[1], sit->first, 2, coprimeR);
				}
				if (ranks.size() == 1) ranks.push_back(coprimeR);
	
	            if (effexp < *eit) {
	                for(size_t expo = effexp<<1; ranks.back() < coprimeR; expo<<=1) {
	                    PRankInteger(ranks, argv[1], sit->first, expo, coprimeR);
	                }
	            } else {
	
	                for(size_t expo = (*eit)<<1; ranks.back() < coprimeR; expo<<=1) {
	                    PRank(ranks, effexp, argv[1], sit->first, expo, coprimeR);
	                    if (ranks.size() < expo) {
	     //                   cerr << "It seems we need a larger prime power, it will take longer ..." << endl;
	                            // break;
	                        PRankInteger(ranks, argv[1], sit->first, expo, coprimeR);
	                    }
	                }
	            }
	
				vector<size_t>::const_iterator rit=ranks.begin();
				// size_t modrank = *rit;
				for(++rit; rit!= ranks.end(); ++rit) {
					if ((*rit)>= coprimeR) break;
					for(size_t i=(*rit); i < coprimeR; ++i)
						SmithDiagonal[i] *= sit->first;
					// modrank = *rit;
				}
			}
		}
	
		integer si=1;
		size_t num=0;
		cout << '(';
		for( vector<integer>::const_iterator dit=SmithDiagonal.begin();
		     dit != SmithDiagonal.end(); ++dit) {
			if (*dit == si) ++num;
			else {
				if (num > 0)
					cout << '[' << si << ',' << num << "] ";
				num=1;
				si = *dit;
			}
		}
		cout << '[' << si << ',' << num << "] )" << endl;
		chrono.stop();
		cout << "T" << A.rowdim() << "smithvalence(ZRing<Integer>):= "
			<< chrono << endl;
	
	}
	return 0;
}

//! @bug this already exists elsewhere
template<class I1, class Lp>
void distinct (I1 a, I1 b, Lp& c)
{
	typename iterator_traits<I1>::value_type e;
	size_t count = 0;
	if (a != b) {e = *a; ++a; count = 1;}
	else return;
	while (a != b)
	{  if (*a == e) ++count;
    else
    { c.emplace_back(e, count);
    e = *a; count = 1;
    }
    ++a;
	}
	c.emplace_back(e, count);
	return;
}

template <class I>
void display(I b, I e)
{ cout << "(";
 for (I p = b; p != e; ++p) cout << '[' << p->first << "," << p->second << "] ";
 cout << ")" << endl;
}

template<class Int_type, class Ring_type>
void runpoweroftworank(ifstream& input, const size_t exponent, size_t StPr) {
    typedef std::vector<std::pair<size_t,Int_type> > Smith_t;
    typedef Ring_type Ring; // signed ?
    typedef LinBox::SparseMatrix<Ring, 
        LinBox::SparseMatrixFormat::SparseSeq > SparseMat;

    Smith_t local;
    Ring R;
    LinBox::MatrixStream<Ring> ms( R, input );
    SparseMat A (ms);

    input.close();
    LinBox::PowerGaussDomainPowerOfTwo< Int_type > PGD;
    LinBox::GF2 F2;
    Permutation<GF2> Q(F2,A.coldim());
            
    cout << "A is " << A.rowdim() << " by " << A.coldim() << endl;
    if (A.rowdim() <= 20 && A.coldim() <= 20) A.write(cout,Tag::FileFormat::Maple) << endl;

    Givaro::Timer tim; 
    tim.clear(); tim.start();
    if (StPr)
        PGD(local, A, Q, exponent, StPr);
    else
        PGD(local, A, Q, exponent);
    tim.stop();

    R.write(std::cout << "Local Smith Form ") << " : " << std::endl << '(';
	int num = A.rowdim();
    for (auto  p = local.begin(); p != local.end(); ++p) {
        std::cout << '[' << p->second << ',' << p->first << "] ";
		num -= p->first;
	}
	if (num > 0) std::cout << '[' << F2.zero << ',' << num << "] ";
	std::cout << ')' << std::endl;

    std::cerr << tim << std::endl;
} // runpowerof2

// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s