1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
|
/* Copyright (C) LinBox
*
*
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
#include "linbox/field/modular.h"
#include "linbox/integer.h" // <- Wrapper for gmp BIG int support
// #include "linbox/field/integer.h" <- When linbox supports computations
// over the whole integers
#include "linbox/blackbox/triplesbb.h" // Special blackbox for this interface
#include "linbox/solutions/rank.h"
#include "linbox/solutions/det.h"
#include "linbox/solutions/minpoly.h"
// #include "linbox/solutions/ssolve.h" <- When linbox supports System solver
#include <vector>
#include <map>
#include <utility>
#include <cstring>
#include <cstdio>
#include "maplec.h"
using LinBox::integer;
typedef std::vector<long> Vectorl;
typedef std::vector<integer> VectorI;
typedef LinBox::TriplesBB<Givaro::Modular<long> > TriplesBBi;
typedef LinBox::TriplesBB<Givaro::Modular<integer> > TriplesBBI;
/* Type references: Used to identify the type of object pointed to by
* elements in the hash table.
* Types: BlackBoxi - Black Box matrix, single-word size entries
* Class: LinBox::TriplesBB<Givaro::Modular<long>, std::vector<long> > (TriplesBBi)
* BlackBoxI - Black Box matrix, multi-word size entries
* Class: LinBox::TriplesBB<Givaro::Modular<integer>, std::vector<integer> > (TriplesBBI)
* SmallV - STL vector, single-word size entries
* Class: std::vector<long> (Vectorl)
* LargeV - STL vector, multi-word size entries
* Class: std::vector<integer> (VectorI)
*/
const int BlackBoxi = 1;
const int BlackBoxI = 2;
const int SmallV = 3;
const int LargeV = 4;
extern "C"
{
ALGEB End(MKernelVector kv, ALGEB* args);
ALGEB initBB(MKernelVector kv, ALGEB* args);
ALGEB getMatrix(MKernelVector kv, ALGEB* args);
ALGEB killMatrix(MKernelVector kv, ALGEB* args);
ALGEB initV(MKernelVector kv, ALGEB* args);
ALGEB getVector(MKernelVector kv, ALGEB* args);
ALGEB killVector(MKernelVector kv, ALGEB* args);
ALGEB apply(MKernelVector kv, ALGEB* args);
ALGEB applyT(MKernelVector kv, ALGEB* args);
ALGEB rank(MKernelVector kv, ALGEB* args);
ALGEB det(MKernelVector kv, ALGEB* args);
ALGEB minpoly(MKernelVector kv, ALGEB* args);
// ALGEB ssolve(MKernelVector kv, ALGEB* args);
}
ALGEB & LiToM(MKernelVector &, const integer &, ALGEB &);
integer & MtoLI(MKernelVector &, integer &, const ALGEB &);
std::map<int,void*> hashTable;
std::map<int, int> typeTable;
/* End -- LBmaple back-end module "destructor". Cleans up all external data
* when the LBmaple module goes out of scope and is garbage collected.
* Pre-Condition: attached maple module has gone out of scope and is
* garbage collected.
* Post-Condition: all dynamically allocated data is freed
*/
extern "C"
{
ALGEB End(MKernelVector kv, ALGEB* args)
{
/* Four types of objects stored in memory */
TriplesBBi* BBip;
TriplesBBI* BBIp;
Vectorl* Vip;
VectorI* VIp;
std::map<int,int>::iterator f_i;
std::map<int,void*>::iterator h_i;
// For each object in the hashTable . . .
for( h_i = hashTable.begin(); h_i != hashTable.end(); ++h_i) {
// Find the objects type and switch appropriately. . .
f_i = typeTable.find(h_i->first);
switch( f_i->second ) {
// In each case, delete the object pointed to
case BlackBoxi:
BBip = (TriplesBBi*) h_i->second;
delete BBip;
break;
case BlackBoxI:
BBIp = (TriplesBBI*) h_i->second;
delete BBIp;
break;
case SmallV:
Vip = (std::vector<long> *) h_i->second;
delete Vip;
break;
case LargeV:
VIp = ( std::vector<integer> *) h_i->second;
delete VIp;
break;
/* Of course there are more cases to follow */
}
}
// When all objects are deleted, return
return ToMapleNULL(kv);
}
}
/* initBB - Backend "constructor" for Maple BlackBox objects. Takes as input 3 types of objects
* from Maple: A Maple NAG sparse Matrix, 3 vectors defining a word-size entry matrix, or
* 3 vectors defining a multi-word size entry matrix
* Declares the object in dynamic memory and hashes into hashTable and typeTable
* using the key supplied by Maple.
* Pre-Condition: Called from Maple to create blackbox type
* Post-Condition: Blackbox object exists in dynamic memory, can be called upon with key
* supplied by Maple
*/
extern "C"
{
ALGEB initBB(MKernelVector kv, ALGEB* args)
{
// First get flag and key
// IN this c
int flag = MapleToInteger32(kv,args[1]), key = MapleToInteger32(kv,args[2]);
size_t m, n, nonzeros, i;
// perform an intial search to see if the key is stored in memory. If so, return the key,
// the object already exists
// Otherwise, switch on the type
switch(flag) {
// The first type is the Maple NAG sparse matrix. It is passed straight into the routine
// the prime is passed first, then the object. All pertinant data can be lifted using
// Maple's extensive rtable API
case 1: {
long p;
int *data;
NAG_INT *rowP, *colP;
TriplesBBi* In;
p = MapleToInteger32(kv, args[3]);
m = RTableUpperBound(kv, args[4], 1);
n = RTableUpperBound(kv, args[4], 2);
nonzeros = RTableNumElements(kv, args[4]);
// Get pointers to the data
rowP = RTableSparseIndexRow(kv,args[4],1);
colP = RTableSparseIndexRow(kv, args[4],2);
data = (int*) RTableDataBlock(kv,args[4]);
// Declare a new object on the heap
Givaro::Modular<long> modF(p);
In = new TriplesBBi(modF, m, n, nonzeros);
// Add each entry
for(i = 0; i < nonzeros; ++i) {
In->addEntry( data[i], rowP[i], colP[i]);
}
// hash the pointer into the hasTable, the type into the typeTable using the key
hashTable.insert(std::pair<int,void*>(key, In));
typeTable.insert(std::pair<int,int>( key, BlackBoxi ));
}
break;
// In the second case, the user either A) Created a BlackBox from an existing sparse
// matrix in Maple, or created a Matrix by passing in parameters and a procedure
// In either case, the data is formatted in Maple, and a number of parameters are passed
// to this routine.
// First is the prime, then the row list, then the column list, the entry list, followed
// by the rows, columns, and number of non-zero entries.
case 2: {
long p;
TriplesBBi* In;
p = MapleToInteger32(kv, args[3]);
m = (size_t) MapleToInteger32(kv,args[7]);
n = (size_t) MapleToInteger32(kv,args[8]);
nonzeros = (size_t) MapleToInteger32(kv,args[9]);
// Declares field and blackbox
Givaro::Modular<long> modF(p);
In = new TriplesBBi(modF, m, n, nonzeros);
// Populates blackbox w/ entries
for(i = 1; i <= nonzeros; i++) {
In->addEntry( MapleToInteger32(kv, MapleListSelect(kv, args[4], i)), MapleToInteger32(kv, MapleListSelect(kv, args[5], i)), MapleToInteger32(kv, MapleListSelect(kv, args[6], i)));
}
hashTable.insert(std::pair<int,void*>(key, (void*) In));
typeTable.insert(std::pair<int,int>(key, BlackBoxi));
}
break;
// In this case, a sparse Matrix was input, or a matrix was created w/ a procedure, but
// the matrix is defined by a multi-word size prime. Data is passed in the order
// mentioned for case #2 above. Notice that the function calls the MtoLI function
// to convert into a gmp integer
case 3:{
integer blank, iPrime;
VectorI Elements;
TriplesBBI* In;
iPrime = MtoLI(kv, iPrime, args[3]);
m = (size_t) MapleToInteger32(kv,args[7]);
n = (size_t) MapleToInteger32(kv,args[8]);
nonzeros = (size_t) MapleToInteger32(kv,args[9]);
// Declare Field and blackbox
Givaro::Modular<integer> modF(iPrime);
In = new TriplesBBI(modF, m, n, nonzeros);
for(i = 1; i <= nonzeros; i++) {
In->addEntry( MtoLI(kv, blank, MapleListSelect(kv, args[4],i)), MapleToInteger32(kv, MapleListSelect(kv, args[5], i)), MapleToInteger32(kv, MapleListSelect(kv, args[6], i)));
}
hashTable.insert(std::pair<int,void*>(key, In));
typeTable.insert(std::pair<int,int>(key,BlackBoxI));
}
break;
// In case some weird operation is requested, just bail.
default:
MapleRaiseError(kv, "ERROR! Confused by request. No action performed.");
break;
}
return ToMapleNULL(kv);
}
}
/* initV - Backend "constructor" for LBmaple vector type.
* Can create either a wordsize entry
* vector, or a multi-precision vector (distinction made by entry size flag passed
* from Maple). Declares the object in dynamic memory and hashes into hashTable and typeTable
* using the key supplied by Maple.
* Pre-Condition: Called from Maple with initialized data in a correct format
* Post-Condition: Blackbox object exists in dynamic memory, can be called upon with key
* supplied by Maple
*/
extern "C" {
ALGEB initV(MKernelVector kv, ALGEB* args)
{
// First get the flag and key to use. The flag indicates what type of object was passed in
// the key what key it should be hashed against
int flag = MapleToInteger32(kv,args[1]), key = MapleToInteger32(kv,args[2]), length, index, i, j, L;
std::vector<long>* vP;
std::vector<integer>* VP;
integer blank;
// Performs a quick table check to see if the Vector has already been
// created. If so, simply return it
std::map<int,void*>::iterator h_i = hashTable.find(key);
if( h_i != hashTable.end() ) {
return ToMapleInteger(kv, (long) key);
}
// A few good choices
switch( flag ) {
// For this case, a complete maple list of single-word size entries is passed
// in that will be translated (1-1) into an STL vector and hased in.
case 1:
// First get the vector length
length = MapleToInteger32(kv, args[4]);
// dynamically allocate the new object, and reserve space in memory for savings
vP = new std::vector<long>;
vP->reserve(length);
// initialize entries and hash into hashTable
for(i = 1; i <= length; i++) {
vP->push_back( MapleToInteger32(kv, MapleListSelect(kv, args[3], (M_INT) i)));
}
hashTable.insert(std::pair<int, void*>(key, vP));
break;
// For thsi case, a complete maple list of multi-word sized entries is passed
// in that will be translate (1-1) into an STL vector and hashed in.
case 2:
length = MapleToInteger32(kv, args[4]);
VP = new std::vector<integer>;
VP->reserve(length);
for(i = 1; i <= length; i++) {
VP->push_back( MtoLI(kv, blank, MapleListSelect(kv, args[3], (M_INT) i)));
}
hashTable.insert(std::pair<int,void*>(key, VP));
break;
// In this case, the vector passed in was parsed into a two lists, the first containing
// the data entries, the second containing the indice in which this entry goes. Each of
// these entries are single word integers
case SmallV:
// Initialzie variables, get length and first indice
i = 1; j = 1;
length = MapleToInteger32(kv, args[5]);
L = MapleToInteger32(kv, args[6]);
// For speed, ensures only 1 memory management adjustment in creation
vP = new std::vector<long>;
vP->reserve(L);
for( ; i <= length; ++i) {
index = MapleToInteger32(kv, MapleListSelect(kv, args[3], i));
// All lists are passed back in sparse form, so just add zeros
// until you get to the correct index
while(j < index) {
vP->push_back(0L);
++j;
}
// Add the nonzero entry
vP->push_back( (long) MapleToInteger32(kv,MapleListSelect(kv,args[4], i)));
// ++index
++j;
}
// Now populate the rest of V with 0's
for(i = index + 1 ; i <= L; ++i)
vP->push_back( 0L );
hashTable.insert(std::pair<int,void*>(key, vP));
break;
// Multi-word integer case. As above, 2 sparse lists are passed in. The first contains
// all the non-zero entries. The second contains the indice of each element.
case LargeV:
i = 1; j = 1;
length = MapleToInteger32(kv,args[5]);
L = MapleToInteger32(kv, args[6]);
VP = new std::vector<integer>;
VP->reserve(L );
for( ; i <= length; ++i ) {
index = MapleToInteger32(kv, MapleListSelect(kv, args[3], i));
while(j < index) {
VP->push_back( integer(0) );
++j;
}
// Add a nonzero entry
VP->push_back( MtoLI(kv, blank, MapleListSelect(kv,args[4], i) ));
++j;
// ++index :-)
index = MapleToInteger32(kv,MapleListSelect(kv,args[3],i));
}
for( ; i <= L; ++i)
VP->push_back( integer(0) );
hashTable.insert(std::pair<int,void*>(key, VP));
break;
// In case a weird action is performed, just bail out
default:
MapleRaiseError(kv,"ERROR! Confused by request. Bailing out.");
}
// Corrects for list cases. Ensures that the "flag" variable is either 3 or 4, so it will
// properly correspond to the type settings in the type table
// insert the type in the typeTable
if(flag < 3) flag += 2;
typeTable.insert(std::pair<int,int>(key,flag));
return ToMapleNULL(kv);
}
}
/* killMatrix - BackEnd "destructor" for a Maple blackbox element that goes out of scope.
* Deletes the blackbox.
* Pre-condition: The object hashed to by key is an active BlackBox matrix.
* Post-condition: The BlackBox matrix hashed to by key is freed
*/
extern "C"
{
ALGEB killMatrix(MKernelVector kv, ALGEB* args)
{
char err[] = "ERROR! Associated blackbox object does not exist!";
int key = MapleToInteger32(kv,args[1]), flag;
// Gets the type in question
std::map<int,int>::iterator i = typeTable.find(key);
// If the associated object code is not there, we have a problem. Bail.
if( i == typeTable.end() )
MapleRaiseError(kv,err);
// Otherwise we're good
flag = i->second;
// Erase the entry from the typeTable
typeTable.erase(key);
// hash out the pointer
std::map<int, void*>::iterator h_i = hashTable.find(key);
if( h_i != hashTable.end() ) {
switch( flag ) { // Free the data, whatever it is
case BlackBoxi:{
TriplesBBi* ptr = (TriplesBBi*) h_i->second;
delete ptr;
}
break;
case BlackBoxI: {
TriplesBBI* ptr = (TriplesBBI*) h_i->second;
delete ptr;
}
break;
}
// remove the pointer and bail
hashTable.erase(key);
}
return ToMapleNULL(kv);
}
}
/* killVector - Backend "destructor" for a linbox vector object in Maple. Takes as input a key to the
* data. Frees up dynamic memory and removes the object from the hash tables
* Pre-Condition: key is a key to a valid vector object
* Post-Condition: Dynamic memory is freed and the object is removed from the hash tables.
*/
extern "C"
{
ALGEB killVector(MKernelVector kv, ALGEB* args)
{
// Gets the key
int key = MapleToInteger32(kv, args[1]), flag;
char err[] = "ERROR! Associated Vector object does not exist!";
// Checks to see if the object is there. If not, bail
std::map<int,int>::iterator f_i = typeTable.find(key);
if( f_i == typeTable.end() )
MapleRaiseError( kv, err);
// We're good otherwise
flag = f_i->second;
// In case the flag is there but the data isn't
typeTable.erase(key);
// Get ahold of the data
std::map<int,void*>::iterator h_i = hashTable.find(key);
if( h_i != hashTable.end() ) {
// Switch according to the vector type, small or large
switch( flag) {
case SmallV: {
Vectorl* ptr = (Vectorl*) h_i->second;
delete ptr;
}
break;
case LargeV: {
VectorI* ptr = (VectorI*) h_i->second;
delete ptr;
}
break;
}
hashTable.erase(key);
}
// Do nothing if it isn't in there
return ToMapleNULL(kv);
}
}
/* getMatrix - Returns an rtable object initialized with the data from the blackbox. This is a bit
* of a hack, as the differences between Maple versions becomes an issue. There are two methods:
* 1) (if using Maple 7) use string tools to build a string that embodies the proper command to
* declare an rtable object, and invoke this command with the MapleEvalStatement() function, or
* 2) use Maple's RTable API to create a new RTable object (this works in Maple 8, and I'm
* presuming Maple 6 and 5. Special thanks to tech support at Maple Soft for informing me that in
* maple 7, the RTableCreate() function has been disabled).
* Pre-Condition: The key provided by the call hashes to a valid BlackBox object
* Post-Condition: An RTable object initialized with the entries of the Black Box is returned to Maple
*/
extern "C"
{
ALGEB getMatrix(MKernelVector kv, ALGEB* args)
{
// Get the key
int key = MapleToInteger32(kv,args[1]), flag;
char err[] = "ERROR! The associated BlackBox object does not exist!";
M_INT index[2], bound[4];
RTableData d;
ALGEB rtable, blank;
RTableSettings s;
std::vector<size_t> Row, Col;
std::vector<size_t>::const_iterator r_i, c_i;
char MapleStatement[100] = "rtable(1..";
// Get the data type of the blackbox
std::map<int,int>::iterator f_i = typeTable.find(key);
if( f_i == typeTable.end() ) // In case the blackbox isn't there
MapleRaiseError(kv,err);
flag = f_i->second; // Otherwise, get the blackbox type
// Check that the data is there
std::map<int,void*>::iterator h_i = hashTable.find(key);
if(h_i != hashTable.end() ) {
// Switch according to mode - regular or "special fix" mode
switch( MapleToInteger32(kv, args[3])) {
case 1: // This is the Maple 7 case, "special fix" mode
// Use the EvalMapleStatement() to call the rtable constructor in the
// Maple environment
// Switch according to the type
switch(flag) {
case BlackBoxi:{ // For single word entry matrices
// Extract the necessary data
TriplesBBi* BB = (TriplesBBi*) h_i->second;
Vectorl Data = BB->getData();
Row = BB->getRows();
Col = BB->getCols();
Vectorl::const_iterator d_i;
// Builds the statement that will be used in the Maple 7 callback
sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->rowdim() );
strcat(MapleStatement, ",1..");
sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->coldim() );
strcat(MapleStatement, ", subtype=Matrix, storage=sparse);");
// Perform the callback
rtable = kv->evalMapleStatement(MapleStatement);
// Insert each non-zero entry
for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++c_i, ++r_i) {
index[0] = *r_i; index[1] = *c_i;
d.dag = ToMapleInteger(kv, *d_i); // d is a union, dag is the
// ALGEB union field
RTableAssign(kv, rtable, index, d);
}
}
break;
case BlackBoxI: { // For multi-word size matrix types
TriplesBBI* BB = (TriplesBBI*) h_i->second;
VectorI Data = BB->getData();
VectorI::const_iterator d_i;
// Build and execute the Maple callback
sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->rowdim() );
strcat(MapleStatement, ", 1..");
sprintf(MapleStatement + strlen(MapleStatement), "%d", BB->coldim() );
strcat(MapleStatement, ", subtype=Matrix, storage=sparse);");
rtable = kv->evalMapleStatement(MapleStatement);
for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++r_i, ++c_i) {
index[0] = *r_i; index[1] = *c_i;
// * Okay, here's how this line works. Basically,
// * in order to set the entries of this RTable to
// * multi-precision integers, I have to first use my own conversion
// * method, LiToM, to convert the integer entry to a ALGEB structure,
// * then do a callback into Maple that calls the ExToM procedure,
// * which converts the results of LiToM into a Maple multi-precision
// * integer. At the moment, this is the best idea I've got as to
// * how to convert a GMP integer into a Maple representation in one shot.
// *
d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *d_i, blank));
RTableAssign(kv, rtable, index, d);
}
}
break;
// In this case the object is not a BlackBox type
default:
MapleRaiseError(kv,err);
break;
}
break;
case 2: // Okay, here is the normal case.
// Use RTableCreate to create a Maple rtable object
kv->rtableGetDefaults(&s);
// Get default settings - set datatype to Maple,
// DAGTAG to anything
s.subtype = RTABLE_MATRIX; // Subtype set to Matrix
s.storage = RTABLE_SPARSE; // Storage set to sparse
s.num_dimensions = 2; // What do you think this means :-)
bound[0] = bound[2] = 1; // Set the lower bounds of each dimension to 0, which for maple is 1
switch(flag) { // Switch on data type
case BlackBoxi:{ // word size entry Matrix
TriplesBBi* BB = (TriplesBBi*) h_i->second;
Vectorl Data = BB->getData();
Row = BB->getRows();
Col = BB->getCols();
Vectorl::const_iterator d_i;
bound[1] = BB->rowdim();
bound[3] = BB->coldim();
rtable = kv->rtableCreate(&s, NULL, bound); // This is the RTableCreate function, it's
// just the one that works
// Assign all the non-zero rows
for( d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++c_i, ++r_i) {
index[0] = *r_i; index[1] = *c_i;
d.dag = ToMapleInteger(kv, *d_i); // d is a union, dag is the
// ALGEB union field
RTableAssign(kv, rtable, index, d);
}
}
break;
case BlackBoxI: { // For multi-word entry Matrices
TriplesBBI* BB = (TriplesBBI*) h_i->second;
VectorI Data = BB->getData();
// Setup the Create() call
VectorI::const_iterator d_i;
Row = BB->getRows();
Col = BB->getCols();
bound[1] = BB->rowdim();
bound[3] = BB->coldim();
rtable = kv->rtableCreate(&s, NULL, bound); // Create an empty RTable
// Populate the RTable using the callback method described below
for(d_i = Data.begin(), r_i = Row.begin(), c_i = Col.begin(); r_i != Row.end(); ++d_i, ++r_i, ++c_i) {
index[0] = *r_i; index[1] = *c_i;
// * Okay, here's how this line works. Basically,
// * in order to set the entries of this RTable to
// * multi-precision integers, I have to first use my own conversion
// * method, LiToM, to convert the integer entry to a ALGEB structure,
// * then do a callback into Maple that calls the ExToM procedure,
// * which converts the results of LiToM into a Maple multi-precision
// * integer. At the moment, this is the best idea I've got as to
// * how to convert a GMP integer into a Maple representation in one shot.
d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *d_i, blank));
RTableAssign(kv, rtable, index, d);
}
}
break;
}
}
}
else
MapleRaiseError(kv,err);
return rtable;
}
}
/* getVector - Returns a Maple vector initalized with the data from the LinBox vector. As above,
* is a hack in order to support two differing versions in Maple. Normally, would use the RTableCreate()
* function to properly create the Vector, but in Maple7 this isn't supported. The code is essentially
* the same as above, accept that we are building a vector rather than a Matrix
* Pre-Condition: the key provided hashes to a viable vector object in the hashTable
* Post-Condition: A properly initalized vector object is returned to maple
*/
extern "C"
{
ALGEB getVector(MKernelVector kv, ALGEB* args)
{
// Get the key, declare variables
int key = MapleToInteger32(kv,args[1]), flag;
char err[] = "ERROR! The associated Vector object does not exist!";
M_INT index, bound[2];
RTableData d;
RTableSettings s;
ALGEB rtable, blank;
char MapleStatement[100] = "rtable(1..";
// Check to see if the object pointed to by key is in the type table. If not, panic
std::map<int,int>::iterator f_i = typeTable.find(key);
if(f_i == typeTable.end() ) {
MapleRaiseError(kv, err);
}
// Otherwise, we have our object
flag = f_i->second;
// Get a pointer to the actual data
std::map<int,void*>::iterator h_i = hashTable.find(key);
if(h_i != hashTable.end() ) {
// Diverge over whether we are using maple 7 or 8 ( and 5 & 6)
// in Maple, arg 3 is a flag indicating which method to use
switch( MapleToInteger32(kv, args[3])) {
// In this case, Maple 7 is being used, we have to construct a call using "EvalMapleStatement()"
// to call the RTable constructor
case 1:
switch(flag) {
case SmallV:{
// Get the vector
Vectorl* V = (Vectorl*) h_i->second;
Vectorl::const_iterator V_i;
// Create the Maple object
sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() );
strcat(MapleStatement, ", subtype=Vector[column], storage=sparse)");
rtable = kv->evalMapleStatement(MapleStatement);
// populate the Maple vector w/ the entries from V above
for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) {
d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the
// ALGEB union field
RTableAssign(kv, rtable, &index, d);
}
}
break;
case LargeV: {
// This part works the same way as above
VectorI* V = (VectorI*) h_i->second;
VectorI::const_iterator V_i;
sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() );
strcat(MapleStatement, ",subtype=Vector[column], storage=sparse)");
rtable = kv->evalMapleStatement(MapleStatement);
// Use maple callback to call the procedure from Maple that translates a gmp integer
// into a large maple integer. Then put this into the Maple vector
for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) {
/* Okay, here's how this line works. Basically,
* in order to set the entries of this RTable to
* multi-precision integers, I have to first use my own conversion
* method, LiToM, to convert the integer entry to a ALGEB structure,
* then do a callback into Maple that calls the ExToM procedure,
* which converts the results of LiToM into a Maple multi-precision
* integer. At the moment, this is the best idea I've got as to
* how to convert a GMP integer into a Maple representation in one shot.
*/
d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank));
RTableAssign(kv, rtable, &index, d);
}
}
break;
default:
MapleRaiseError(kv, err);
break;
}
break;
// In this case, use the simpler RTableCreate function, rather than building a string
// that must be parsed by maple
case 2:
kv->rtableGetDefaults(&s); // Get default settings - set datatype to Maple,
// DAGTAG to anything
s.subtype = 2; // Subtype set to column vector
s.storage = 4; // Storage set to rectangular
s.num_dimensions = 1; // What do you think this means :-)
bound[0] = 1; // Set the lower bounds of each dimension to 0
switch(flag) {// Switch on data type of vector
case SmallV:{ // single word integer entry vector
Vectorl* V = (Vectorl*) h_i->second;
Vectorl::const_iterator V_i;
bound[1] = V->size();
rtable = kv->rtableCreate(&s, NULL, bound); // Create the Maple vector
for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) {
d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the
// ALGEB union field
RTableAssign(kv, rtable, &index, d);
}
}
break;
case LargeV: { // Same as above for multi-word integer entry vector
VectorI* V = (VectorI*) h_i->second;
VectorI::const_iterator V_i;
bound[1] = V->size();
rtable = kv->rtableCreate(&s, NULL, bound);
for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) {
/* Okay, here's how this line works. Basically,
* in order to set the entries of this RTable to
* multi-precision integers, I have to first use my own conversion
* method, LiToM, to convert the integer entry to a ALGEB structure,
* then do a callback into Maple that calls the ExToM procedure,
* which converts the results of LiToM into a Maple multi-precision
* integer. At the moment, this is the best idea I've got as to
* how to convert a GMP integer into a Maple representation in one shot.
*/
d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank));
RTableAssign(kv, rtable, &index, d);
}
}
break;
default:
MapleRaiseError(kv, err);
break;
}
break; // breaks case 2.
// This was causing a wicked error :-)
default:
MapleRaiseError(kv, err);
break;
}
}
else {
MapleRaiseError(kv, err);
}
return rtable;
}
}
/* apply - Application function, Takes a Blackbox A and Vector X and performs the apply Ax.
* There's alot of code here that essentially leads to simply calling the BlackBox's apply routine,
* but there is alot that can go wrong with this call.
* Pre-Condition: BlackBox & Vector objects exist in the hashtable; Blackbox data-type can handle
* size of vector (ie - not trying to apply a large entry vector to a small entry Matrix
* Post-Condition: New Vector is produced, put into hash table for future calls, access key returned
* to Maple
*/
extern "C"
{
ALGEB apply(MKernelVector kv, ALGEB* args)
{
// There are probably a million better random number generators, but for the moment I use this one
int BBKey = MapleToInteger32(kv,args[1]), VKey = MapleToInteger32(kv,args[2]), bflag, vflag, nKey;
VectorI *tempIV, newV;
Vectorl *tempiV, *vp;
char MisMatchErr[] = "ERROR! The Vector elements are not in the field of the Matrix!";
char BBnoFind[] = "ERROR! The associated Blackbox object does not exist!";
char VectnoFind[] = "ERROR! The associated Vector object does not exist!";
std::map<int,int>::iterator f_i;
std::map<int, void*>::iterator h_i;
// Get the random key from Maple
nKey = MapleToInteger32(kv, args[3]);
// Hash out the blackbox type
f_i = typeTable.find(BBKey);
if( f_i == typeTable.end() )
MapleRaiseError(kv, BBnoFind);
else
bflag = f_i->second;
// Hash out the vector type
f_i = typeTable.find(VKey);
if( f_i == typeTable.end() )
MapleRaiseError(kv, VectnoFind);
else
vflag = f_i->second;
// check that there isn't a type mismatch
if( bflag == BlackBoxi && vflag == LargeV)
// If this comes up, it means we have a large int vector, and a small int blackbox. Bad
MapleRaiseError(kv, MisMatchErr);
else if( bflag == BlackBoxI && vflag == SmallV) {
// If this comes up, it means we have a small int vector, and a large int blackbox. Not fatal.
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFind);
TriplesBBI* BB = (TriplesBBI*) h_i->second;
h_i = hashTable.find(VKey);
if(h_i == hashTable.end() )
MapleRaiseError(kv, VectnoFind);
vp = (Vectorl*) h_i->second;
// Converts the small vector into a large vector
// Note, the reserve ensures there will only be at most one reallocation neccessary
newV.reserve(vp->size() );
for(Vectorl::iterator i = vp->begin(); i != vp->end(); ++i)
newV.push_back(integer(*i));
// Puts tempIV on the stack, so that it will persist. Also, set the correct size
tempIV = new VectorI;
tempIV->resize( BB->coldim() );
// Perform the apply
BB->apply( *tempIV, newV);
hashTable.insert(std::pair<int,void*>(nKey, tempIV));
typeTable.insert(std::pair<int,int>(nKey, LargeV));
}
else { // In this case, the types match (single word integer matrix w/ single word integer vector,
// or multi-word entry w/ multi-word entry. This simplifies the code a good bit
switch( bflag) {
case BlackBoxi: {
// Get the BlackBox
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFind);
TriplesBBi* BB = (TriplesBBi*) h_i->second;
// Get the Vector
h_i = hashTable.find(VKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, VectnoFind);
vp = (Vectorl*) h_i->second;
// Perform the apply. Note, sets the temp vector's size to the columnar dimension
tempiV = new Vectorl;
tempiV->resize( BB->coldim() );
BB->apply(*tempiV, *vp);
// Hash the results
hashTable.insert(std::pair<int, void*>(nKey, tempiV));
typeTable.insert(std::pair<int,int>(nKey,SmallV));
}
break;
case BlackBoxI: {
// Get the BlackBox
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFind );
TriplesBBI* BB = (TriplesBBI*) h_i->second;
// Get the vector
h_i = hashTable.find(VKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, VectnoFind );
VectorI* Vp = (VectorI*) h_i->second;
// Perform the apply
tempIV = new VectorI;
tempIV->resize( BB->coldim() );
BB->apply( *tempIV, *Vp);
// Hash in the results
hashTable.insert(std::pair<int,void*>(nKey, tempIV));
typeTable.insert(std::pair<int,int>(nKey,LargeV));
}
break;
}
}
// If you get to this point, something has been hashed in, so return the key
return ToMapleInteger(kv, (long) nKey);
}
}
/* applyT - Application function. Takes a Blackbox A and Vector X and performs the transpose apply,
* Atx. There's alot of code here that essentially leads to simply calling the BlackBox's apply routine,
* but there is alot that can go wrong with this call.
* Pre-Condition: BlackBox & Vector objects exist in the hashtable; Blackbox data-type can handle
* size of vector (ie - not trying to apply a large entry vector to a small entry Matrix
* Post-Condition: New Vector is produced, put into hash table for future calls, access key returned
* to Maple
*/
extern "C"
{
ALGEB applyT(MKernelVector kv, ALGEB* args)
{
int BBKey = MapleToInteger32(kv,args[1]), VKey = MapleToInteger32(kv,args[2]), bflag, vflag, nKey;
char misMatchErr[] = "ERROR! Vector not in field of blackbox!";
char BBnoFindErr[] = "ERROR! The associated blackbox object does not exist!";
char VectNoFindErr[] = "ERROR! The associated vector object does not exist!";
VectorI *tempIV, newV;
Vectorl *tempiV, *vp;
std::map<int,int>::iterator f_i;
std::map<int, void*>::iterator h_i;
// Creates the new key
nKey = MapleToInteger32(kv, args[3]);
// Hash out the blackbox type
f_i = typeTable.find(BBKey);
if( f_i == typeTable.end() )
MapleRaiseError(kv,BBnoFindErr);
else
bflag = f_i->second;
// Hash out the vector type
f_i = typeTable.find(VKey);
if( f_i == typeTable.end() )
MapleRaiseError(kv,VectNoFindErr);
else
vflag = f_i->second;
// check that there isn't a type mismatch
if( bflag == BlackBoxi && vflag == LargeV)
// If this comes up, it means we have a large int vector, and a small int blackbox. Bad
MapleRaiseError(kv, misMatchErr);
else if( bflag == BlackBoxI && vflag == SmallV) {
// If this comes up, it means we have a small int vector, and a large int blackbox. Not fatal.
// Bail if data can't be found
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFindErr);
TriplesBBI* BB = (TriplesBBI*) h_i->second;
h_i = hashTable.find(VKey);
if(h_i == hashTable.end() )
MapleRaiseError(kv, VectNoFindErr);
// Build a large entry vector and populate it with the converted data from the small entry vector
vp = (Vectorl*) h_i->second;
newV.reserve( vp->size() );
for(Vectorl::iterator i = vp->begin(); i != vp->end(); ++i)
newV.push_back(integer(*i));
// Puts tempIV on the stack, so that it will persist
tempIV = new VectorI;
tempIV->resize( BB->rowdim() );
// Perform the apply
BB->applyTranspose( *tempIV, newV);
hashTable.insert(std::pair<int,void*>(nKey, tempIV));
typeTable.insert(std::pair<int,int>(nKey, LargeV));
}
else { // For types that match (small Blackbox w/ small Vector or large blackbox w/ large vector)
switch( bflag) {
case BlackBoxi: {
// Get the BlackBox
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFindErr);
TriplesBBi* BB = (TriplesBBi*) h_i->second;
// Get the Vector
h_i = hashTable.find(VKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, VectNoFindErr);
vp = (Vectorl*) h_i->second;
// Perform the apply
tempiV = new Vectorl;
tempiV->resize( BB->rowdim() );
BB->applyTranspose( *tempiV, *vp);
// Hash the results
hashTable.insert(std::pair<int, void*>(nKey, tempiV));
typeTable.insert(std::pair<int,int>(nKey,SmallV));
}
break;
case BlackBoxI: {
// Get the BlackBox
h_i = hashTable.find(BBKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, BBnoFindErr);
TriplesBBI* BB = (TriplesBBI*) h_i->second;
// Get the vector
h_i = hashTable.find(VKey);
if( h_i == hashTable.end() )
MapleRaiseError(kv, VectNoFindErr);
VectorI* Vp = (VectorI*) h_i->second;
// Perform the apply
tempIV = new VectorI;
tempIV->resize( BB->rowdim() );
BB->applyTranspose( *tempIV, *Vp);
// Hash in the results
hashTable.insert(std::pair<int,void*>(nKey, tempIV));
typeTable.insert(std::pair<int,int>(nKey,LargeV));
}
break;
}
}
// If you get to this point, something has been hashed in, so return the key
return ToMapleInteger(kv, (long) nKey);
}
}
/* rank - one of the three main "solution" functions, computes the rank of a BlackBox in the hash table
* Rank is computed using the rank function from the linbox repository
* Pre-Condition: key provided hashes to a valid blackbox object
* Post-Condition: the rank is returned to maple as an int
*/
extern "C"
{
ALGEB rank(MKernelVector kv, ALGEB* args)
{
int key = MapleToInteger32(kv,args[1]), flag;
unsigned long result;
char err[] = "ERROR! Associated blackbox object does not exist!";
TriplesBBi* BBi;
TriplesBBI* BBI;
std::map<int,int>::iterator f_i = typeTable.find(key);
std::map<int,void*>::iterator h_i;
if(f_i == typeTable.end() )
MapleRaiseError(kv,err);
else
flag = f_i->second;
h_i = hashTable.find(key);
if( h_i != hashTable.end() ) {
switch( flag ) {
case BlackBoxi:
BBi = (TriplesBBi*) h_i->second;
return ToMapleInteger(kv, LinBox::rank(result, *BBi, BBi->field() ) ); // <- actual computation starts
break; // here :-)
case BlackBoxI:
BBI = (TriplesBBI*) h_i->second;
return ToMapleInteger(kv,LinBox::rank(result, *BBI, BBI->field() ));
break;
}
}
else
MapleRaiseError(kv,err);
}
}
/* det - Another major "application" function, this computes the determinant of the blackbox mod the
* prime using the LinBox determinant methods, of which I know very little. Look at the
* documentation in the solutions directory for more details.
* Pre-condition: Key hashes to a valid BlackBox object
* Post-condition: The modular determinant of the blackbox is returned as a maple integer
*/
extern "C"
{
ALGEB det(MKernelVector kv, ALGEB* args)
{
char err[] = "ERROR! Associated blackbox object does not exist!";
int key = MapleToInteger32(kv,args[1]), flag;
std::map<int,int>::iterator f_i;
std::map<int,void*>::iterator h_i;
long resulti;
integer resultI;
ALGEB blank;
TriplesBBi *BBi;
TriplesBBI *BBI;
// Get the blackbox
f_i = typeTable.find(key);
if( f_i == typeTable.end() )
MapleRaiseError(kv,err);
else
flag = f_i->second;
// If it's there
h_i = hashTable.find(key);
if( h_i != hashTable.end() ) {
switch( flag ) { // switch on the type
case BlackBoxi:
BBi = (TriplesBBi*) h_i->second;
return ToMapleInteger(kv, LinBox::det(resulti, *BBi, BBi->field() ) );
break;
case BlackBoxI:
BBI = (TriplesBBI*) h_i->second;
return LiToM(kv, LinBox::det(resultI, *BBI, BBI->field() ), blank);
break;
}
}
else
MapleRaiseError(kv, err);
}
}
/* minpoly - Compute the minimal polynomial of the BlackBox matrix using linbox's minpoly solution.
* I have no clue how it works, just that it does. This one is slightly more complicated than the
* other two above
* Pre-condition: Key maps to a valid BlackBox object in the hashTable
* Post-condition: A Maple list of the polynomial coefficients, lowest degree first, is returned
*/
extern "C"
{
ALGEB minpoly(MKernelVector kv, ALGEB* args)
{
int i;
ALGEB retlist, blank;
char err[] = "ERROR! Associated blackbox object does not exist!";
int key = MapleToInteger32(kv,args[1]), flag;
std::map<int,int>::iterator f_i;
std::map<int,void*>::iterator h_i;
// Get the data from the hash table
f_i = typeTable.find(key);
if( f_i == typeTable.end() )
MapleRaiseError(kv,err);
else
flag = f_i->second;
h_i = hashTable.find(key);
if(h_i != hashTable.end() ) { // We've got data
switch( flag ) {
// Getting the minimal polynomial is rather complicated, so both instances of this code were
// wrapped up inside a block, to cut down at the clutter at the top of this function.
// First declares a vector of the proper type and casts the pointer. Then computes the minimal
// polynomial. It then builds the proper Maple list structure for this application.
case BlackBoxi: {
Vectorl mpreturn;
Vectorl::iterator mp_i;
TriplesBBi* BB = (TriplesBBi*) h_i->second;
LinBox::minpoly( mpreturn, *BB, BB->field() );
retlist = MapleListAlloc(kv, mpreturn.size() );
for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i)
MapleListAssign(kv, retlist, i, ToMapleInteger(kv, *mp_i));
}
break;
case BlackBoxI: {
VectorI mpreturn;
VectorI::iterator mp_i;
TriplesBBI* BB = (TriplesBBI*) h_i->second;
LinBox::minpoly( mpreturn, *BB, BB->field() );
retlist = MapleListAlloc(kv, mpreturn.size());
for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i)
MapleListAssign(kv, retlist, i, LiToM(kv, *mp_i, blank));
}
break;
}
}
else
MapleRaiseError(kv,err);
return retlist;
}
}
/* LiToM - Converts from a GMP integer to a Maple list of word-size chunks
* these chunks are passed back into Maple and converted by into maple represented integers
* Pre-Condition: In is an initialized GMP number, Out can be initialized (or re-initialized)
* Post-Condition: Out is an initalized maple integer containing the value of In
*/
ALGEB & LiToM(MKernelVector & kv, const integer & In, ALGEB & Out)
{
// If we get lucky, this thing fits in one word, which is good, so we just
// straight convert it
if(In.size() == 1)
Out = ToMapleInteger(kv, Integer2long(In) );
else {
// Otherwise, create a list, and for each entry, add a word-sized chunk.
Out = MapleListAlloc(kv, In.size() );
for(size_t i = 1; i <= In.size(); ++i)
MapleListAssign(kv,Out,i,ToMapleInteger(kv,In[i-1]));
}
// Return the result for redundancy
return Out;
}
/* MtoLI - conversion between long integers passed from maple into gmp integers
* Uses Horners method.
* Pre-Condition: Out is un-initialized (or can be re-initialized), In is either an int or a
* list
* Post-Condition: Out contains a GMP version of In.
*/
integer & MtoLI(MKernelVector & kv, integer & Out, const ALGEB &In)
{
// We just need 1 base. By default, Maple breaks all integers of a certain size up into
// mod 10000 chunks. The chunks are put into a maple list, and then passed into code
static integer base(10000);
int num, i;
// This could be an int
if( IsMapleInteger32(kv,In) )
// if so, just convert it
Out = integer(MapleToInteger32(kv, In));
else {
// else, get the number of chunks, and convert the highest chunk of In
num = MapleToInteger32(kv, MapleListSelect(kv, In, 1) );
Out = integer(MapleToInteger32(kv, MapleListSelect(kv,In, num) ) );
for(i = num - 1; i > 1; --i) {
// For each additional chunk, multiply Out by the base, and add in the new chunk
Out *= base;
Out += MapleToInteger32(kv, MapleListSelect( kv, In, i));
}
}
// redundant
return Out;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|