1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/* tests/test-fields.C
* Written by Dan Roche
* Copyright (C) June 2004 Dan Roche
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
/*! @file tests/benchmark-fields.C
* @ingroup tests
* @brief no doc
*/
#include "linbox/linbox-config.h"
#include "linbox/util/timer.h"
// #include "linbox/field/givaro-gfq.h"
#ifdef __LINBOX_HAVE_NTL
#include "linbox/ring/ntl.h"
#include "linbox/ring/pid-ntl-lzz_p.h"
#include "linbox/ring/pir-ntl-zz_p.h"
#endif
#include "linbox/field/modular.h"
#include <givaro/modular-balanced.h>
#include "linbox/field/Modular/modular-crooked-double.h"
#include "linbox/field/field-traits.h"
#include "linbox/vector/stream.h"
#include "linbox/integer.h"
#include "linbox/ring/pir-modular-int32.h"
// #include "linbox/field/gf2.h"
#include "linbox/field/gmp-rational.h"
#include "linbox/ring/local2_32.h"
#ifdef __LINBOX_HAVE_LIDIA
#include "linbox/field/lidia.h"
#endif
#include <iostream>
#include <iomanip>
using namespace LinBox;
/* fieldTest is a template function to test out the performance of a given field on a
* machine. Taken are three arguments. The first is a field class object. The second
* is an array, declared but not necessarily initialized, of ten doubles. The
* first nine values will be filled with mops for add, sub, neg, mul, int, div,
* axpy, dot1, and dot2, respectively. (Dot1 is dense*dense, Dot2 is dense*sparse).
* The last value is filled with mops for walking through an array of size iter.
* The third argument is optional and specifies how many loop iterations to use.
*/
template< class Field >
void fieldTest( const Field& f, double* array, long iter = 1000000, bool fulltest = false )
{
size_t vectorSize = 10000;
float sparsity = .01f;
int i;
// initialize a few field elements,
typedef typename Field::Element Element;
Element returnValue; f.assign(returnValue, f.one);
Element s; f.assign(s, f.zero);
Element a, b, c;
typename Field::RandIter r(f);
r.random( a ); r.random( b ); r.random( c );
BlasVector<Field> dv1( f, vectorSize ), dv2( f, vectorSize );
for (i = 0; i <(int) vectorSize; ++i ) {
r.random( dv1[(size_t)i] );
r.random( dv2[(size_t)i] );
}
RandomSparseStream<Field> sparse( f, sparsity, vectorSize );
typename RandomSparseStream<Field>::Vector sv; sparse.get( sv );
#if 0
// initialize and fill array of random elements.
typename Field::RandIter gen(f);
typename Field::Element *elements;
elements = new typename Field::Element[ iter * 3 ];
for( int i = 0; i < iter*3; i++ ) {
do { r.random( elements[(size_t)i] ); }
while( f.isZero( elements[(size_t)i] ) );
}
// initialize random vector streams
RandomDenseStream<Field> dense( f, gen, vectorSize, 2);
typename RandomDenseStream<Field>::Vector dv1; dense.get( dv1 );
typename RandomDenseStream<Field>::Vector dv2; dense.get( dv2 );
RandomSparseStream<Field> sparse( f, gen, sparsity, vectorSize );
typename RandomSparseStream<Field>::Vector sv; sparse.get( sv );
RandomDenseStream<Field> dense1( f, gen, vectorSize, iter/vectorSize );
RandomDenseStream<Field> dense2( f, gen, vectorSize, iter/vectorSize );
RandomSparseStream<Field> sparse( f, sparsity, vectorSize );
// initialize individual vectors to hold results
typename RandomDenseStream<Field>::Vector dv1;
typename RandomDenseStream<Field>::Vector dv2;
typename RandomSparseStream<Field>::Vector sv;
#endif
VectorWrapper::ensureDim (dv1,vectorSize);
VectorWrapper::ensureDim (dv2,vectorSize);
VectorWrapper::ensureDim (sv,vectorSize);
VectorDomain<Field> VD( f );
UserTimer timer;
double overHeadTime;
timer.clear(); timer.start();
f.assign(s, f.zero);
for( i = 0; i < iter; i++ ) { f.init(returnValue, i); f.addin(s, returnValue); }
timer.stop(); overHeadTime = timer.time();
// add
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.add( returnValue, a, b);
f.addin(s, returnValue);
}
timer.stop(); array[0] = timer.time() - overHeadTime;
//std::cout << iter << " add done " << array[0] << std::endl;
if (fulltest) {
// sub
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.sub( returnValue, a, b);
f.addin(s, returnValue);
}
timer.stop(); array[1] = timer.time() - overHeadTime;
// neg
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.neg( returnValue, a);
f.addin(s, returnValue);
}
timer.stop(); array[2] = timer.time() - overHeadTime;
} // end if (fulltest)
// mul
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.mul( returnValue, a, b);
f.addin(s, returnValue);
}
timer.stop(); array[3] = timer.time() - overHeadTime;
//std::cout << iter << " mul done " << array[3] << std::endl;
if (fulltest) {
// inv
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i); if (f.isZero(a)) f.assign(a, f.one);
f.inv( returnValue, a);
f.addin(s, returnValue);
}
timer.stop(); array[4] = timer.time() - overHeadTime;
// div
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.div( returnValue, a, b);
f.addin(s, returnValue);
}
timer.stop(); array[5] = timer.time() - overHeadTime;
} // end if (fulltest)
// axpy
timer.clear(); timer.start();
for( i = 0; i < iter; i++ ) {
f.init(a, i);
f.axpy( returnValue, a, b, c);
f.addin(s, returnValue);
}
timer.stop(); array[6] = timer.time() - overHeadTime;
//std::cout << timer.time() << " - " << overHeadTime << " = " << array[6] << std::endl;;
// DotProduct1 ( dense * dense )
timer.clear(); timer.start();
for( i = 0; i < iter/(int)vectorSize; i++ ) {
f.init(dv1.back(), i);
VD.dot( returnValue, dv1, dv2 );
f.addin(s, returnValue);
}
timer.stop(); array[7] = timer.time();
// std::cout << (iter/vectorSize) << " dd " << timer.time() << std::endl;;
if (fulltest) {
// DotProduct2 ( dense * sparse )
timer.clear(); timer.start();
for( i = 0; i < iter/(int)vectorSize; i++ ) {
f.init(dv1.back(), i);
long sparsity_inv = 100;
for ( int j = 0; j < (int)sparsity_inv; ++ j ) {
f.init(dv1.front(), j);
VD.dot( returnValue, dv1, sv );
f.addin(s, returnValue);
}
}
timer.stop(); array[8] = timer.time();
//std::cout << "ds " << timer.time() << std::endl;;
} // end if (fulltest)
// Convert timings to mops (million operations per second)
for( i = 0; i < 9; i++ ) {
double t = array[(size_t)i];
array[(size_t)i] = (double)iter / (t > 0 ? (t * 1000000) : 0) ;
}
// use s (just in case compiler cares)
if (f.isZero(s)) std::cout << "zero sum" << std::endl;
}
/* This simple test takes and int and a float as arguments, only to make
* sure the compiler does not optimize too much to make the test useless.
* The number returned is the number of times per second the inner loop
* (one floating-point and one int operation) can be executed on the current
* machine.
*/
int64_t getOps(int unit)
{
int64_t ops = 1;
int64_t i = 0;
int a = 13;
double b = 1.3;
UserTimer opsClock;
opsClock.clear();
while( opsClock.time() < unit ) {
// long double c;
ops *= 2;
i = 0;
opsClock.start();
while( ++i < ops ) {
a *= a;
b *= b;
}
opsClock.stop();
// random code to prevent optimization of the loop
if (a<b)
b=a;
else
b = 2*a;
// c = a+b;
}
return ops;
}
void printTimings( double* timings, bool fulltest = false )
{
if (fulltest){ std::cout
<< std::setw(11) << timings[0] << ' '
<< std::setw(11) << timings[1] << ' '
<< std::setw(11) << timings[2] << ' '
<< std::setw(11) << timings[3] << ' '
<< std::setw(11) << timings[4] << ' '
<< std::setw(11) << timings[5] << ' '
;} std::cout
<< std::setw(11) << timings[6] << ' '
<< std::setw(11) << timings[7] << ' '
; if (fulltest){ std::cout
<< std::setw(11) << timings[8] << ' '
;} std::cout
<< std::setw(11) << timings[6]/(1/(1/timings[0] + 1/timings[3])); // axpy/(mul+add) ratio
}
template <class Field>
void doTest(const char* name, integer& p, integer& exp, int64_t& iter, bool fulltest = false)
{
if( FieldTraits<Field>::goodModulus( p ) &&
FieldTraits<Field>::goodExponent( exp ) ) {
static double mops[11];
Field fld( p, exp );
fieldTest( fld, mops, iter, fulltest);
// print name
std::cout << std::setw(20) << name;
printTimings( mops, fulltest);
std::cout << std::endl;
}
else {
std::cout << std::setw(20) << name << ": " << p << "^" << exp << " is out of range" << std::endl;
}
}
int main(int argc, char** argv)
{
int64_t ops = getOps(1);
std::cout << "timings recorded in mops. Bigger is better." << std::endl;
std::cout << "Ops per sec, roughly: " << ops << std::endl;
//int64_t iterations = ops/16;
int64_t iterations = ops;
integer prime(101), exp(1);
if( argc >= 2 ) prime = integer( argv[1] );
if( argc >= 3 ) exp = integer( argv[2] );
//bool fulltest = true;
bool fulltest = false;
if( argc > 3 ) fulltest = ( argv[3][0] == 1 );
if( argc > 4 ) exit(1);
std::cout << std::setw(20) << "Field Name";
if (fulltest) {
std::cout
<< std::setw(12) << "add "
<< std::setw(12) << "sub "
<< std::setw(12) << "neg "
<< std::setw(12) << "mul "
<< std::setw(12) << "inv "
<< std::setw(12) << "div "
;
}
std::cout
<< std::setw(12) << "axpy"
<< std::setw(12) << "dot d*d "
;
if (fulltest) {
std::cout
<< std::setw(12) << "dot d*s "
;
}
std::cout
<< std::setw(12) << "axpy/(mul+add)"
<< std::endl;
doTest< Givaro::Modular<int8_t> >( "Givaro::Modular<int8_t>", prime, exp, iterations, fulltest );
doTest< Givaro::Modular<int16_t> >( "Givaro::Modular<int16_t>", prime, exp, iterations, fulltest );
doTest< Givaro::Modular<int32_t> >( "Givaro::Modular<int32_t>", prime, exp, iterations, fulltest );
//doTest< Givaro::Modular<int> >( "Givaro::Modular<int>", prime, exp, iterations, fulltest );
doTest< Givaro::Modular<double> >( "Givaro::Modular<double>", prime, exp, iterations, fulltest );
doTest< Givaro::Modular<float> >( "Givaro::Modular<float>", prime, exp, iterations, fulltest );
//doTest< Givaro::ModularBalanced<int8_t> >( "Givaro::ModularBalanced<int8_t>", prime, exp, iterations, fulltest );
//doTest< Givaro::ModularBalanced<int16_t> >( "Givaro::ModularBalanced<int16_t>", prime, exp, iterations, fulltest );
doTest< Givaro::ModularBalanced<int32_t> >( "Givaro::ModularBalanced<int32_t>", prime, exp, iterations, fulltest );
doTest< Givaro::ModularBalanced<double> >( "Givaro::ModularBalanced<double>", prime, exp, iterations, fulltest );
doTest< Givaro::ModularBalanced<float> >( "Givaro::ModularBalanced<float>", prime, exp, iterations, fulltest );
doTest< ModularCrooked<double> >( "ModularCrooked<double>", prime, exp, iterations, fulltest );
#ifdef __LINBOX_HAVE_NTL
doTest< NTL_zz_p >( "NTL_zz_p", prime, exp, iterations, fulltest );
doTest< NTL_PID_zz_p >( "NTL_PID_zz_p", prime, exp, iterations, fulltest );
doTest< NTL_ZZ_p >( "NTL_ZZ_p", prime, exp, iterations, fulltest );
doTest< PIR_ntl_ZZ_p >( "PIR_ntl_ZZ_p", prime, exp, iterations, fulltest );
doTest< NTL_ZZ >( "NTL_ZZ", prime, exp, iterations, fulltest );
#endif
#ifdef __LINBOX_HAVE_LIDIA
doTest< LidiaGfq >( "LidiaGfq", prime, exp, iterations, fulltest );
#endif
// doTest< GF2 >( "GF2", prime, exp, iterations, fulltest );
doTest< GMPRationalField >( "GMPRationalField", prime, exp, iterations, fulltest );
//if (prime == 2)
doTest< PIRModular<int32_t> >( "PIRModular<int32_t>", prime, exp, iterations, fulltest );
doTest< Local2_32 >( "Local2_32", prime, exp, iterations, fulltest );
return 0;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|