1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/* linbox/tests/test-common.C
* Copyright (C) 2001, 2002 Bradford Hovinen
*
* Written by Bradford Hovinen <hovinen@cis.udel.edu>
*
* ------------------------------------
* Modified by Dmitriy Morozov <linbox@foxcub.org>. May 27, 2002.
*
* Added parametrization to the VectorCategory tags to make them fit the
* Rootbeer meeting design of VectorCategories being parametrized by
* VectorTraits.
*
* ------------------------------------
*
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*.
*/
#ifndef __LINBOX_test_common_H
#define __LINBOX_test_common_H
#include <iostream>
#include <fstream>
// #include <vector>
#include "linbox/linbox-config.h"
#include "linbox/field/archetype.h"
#include "linbox/integer.h"
#include "linbox/vector/vector-domain.h"
#include "linbox/vector/blas-vector.h"
using namespace std;
#include "linbox/util/commentator.h"
#include "linbox/util/args-parser.h"
template <class Field, class Vector>
void printVectorSpecialized(
Field &F,
ostream &output,
const Vector &v,
LinBox::VectorCategories::DenseVectorTag tag
)
{
unsigned int i;
output << '(';
for (i = 0; i < v.size (); i++) {
F.write (output, v[(size_t)i]);
if (i < v.size () - 1)
output << ", ";
}
output << ')' << endl;
}
template <class Field, class Vector>
void printVectorSpecialized(
Field &F,
ostream &output,
const Vector &v,
LinBox::VectorCategories::SparseSequenceVectorTag tag
)
{
typename Vector::const_iterator i;
unsigned int j;
output << '(';
for (i = v.begin (), j = 0; i != v.end (); j++) {
while (j < (*i).first) {
output << "0, ";
j++;
}
F.write (output, (*i).second);
if (++i != v.end ())
output << ", ";
}
output << ')' << endl;
}
template <class Field, class Vector>
void printVectorSpecialized(
Field &F,
ostream &output,
const Vector &v,
LinBox::VectorCategories::SparseAssociativeVectorTag tag
)
{
typename Vector::const_iterator i;
unsigned int j;
output << '(';
for (i = v.begin (), j = 0; i != v.end (); j++) {
while (j < (*i).first) {
output << "0, ";
j++;
}
F.write (output, (*i).second);
if (++i != v.end ())
output << ", ";
}
output << ')' << endl;
}
template <class Field, class Vector>
void printVector (Field &F, ostream &output, const Vector &v)
{
printVectorSpecialized(F, output, v, typename LinBox::VectorTraits<Vector>::VectorCategory());
}
template <class Field, class Vector>
bool areVectorsEqual (Field &F, const Vector &v, const Vector &w)
{
return areVectorsEqualSpecialized(F, v, w, LinBox::VectorTraits<Vector>::VectorCategory());
}
template <class Field, class Vector>
bool areVectorsEqualSpecialized(
Field &F,
const Vector &v,
const Vector &w,
LinBox::VectorCategories::DenseVectorTag tag
)
{
if (v.size() != w.size()) return false;
for (size_t i = 0; i < v.size(); i++)
if (!F.areEqual (w[(size_t)i], v[(size_t)i]))
return false;
return true;
}
template <class Field, class Vector>
bool areVectorsEqualSpecialized(
Field &F,
const Vector &v,
const Vector &w,
LinBox::VectorCategories::SparseSequenceVectorTag tag
)
{
if (v.size() != w.size()) return false;
typename Vector::const_iterator v_iter, w_iter;
w_iter = w.begin();
for ( v_iter = v.begin(); v_iter != v.end(); ++v_iter, ++w_iter)
if ( (w_iter->first != v_iter->first)
|| (!F.areEqual (w_iter->second, v_iter->second)) )
return false;
return true;
}
template <class Field, class Vector>
bool areVectorsEqualSpecialized(
Field &F,
const Vector &v,
const Vector &w,
LinBox::VectorCategories::SparseAssociativeVectorTag tag
)
{
if (v.size() != w.size()) return false;
typename Vector::const_iterator v_iter, w_iter;
w_iter = w.begin();
for ( v_iter = v.begin(); v_iter != v.end(); ++v_iter, ++w_iter)
if ( (w_iter->first != v_iter->first)
|| (!F.areEqual (w_iter->second, v_iter->second)) )
return false;
return true;
}
template <class Field, class Vector>
bool allZero (Field &F, const Vector &v)
{
return allZeroSpecialized(F, v, LinBox::VectorTraits<Vector>::VectorCategory());
}
template <class Field, class Vector>
bool allZeroSpecialized(
Field &F,
const Vector &v,
LinBox::VectorCategories::DenseVectorTag tag
)
{
for (size_t i = 0; i < v.size(); i++)
if (!F.isZero (v[(size_t)i]))
return false;
return true;
}
template <class Field, class Vector>
bool allZeroSpecialized(
Field &F,
const Vector &v,
LinBox::VectorCategories::SparseSequenceVectorTag tag
)
{
if (0 != v.size())
return false;
else
return true;
}
template <class Field, class Polynomial>
void printPolynomial (Field &F, ostream &output, const Polynomial &v)
{
int i;
size_t val;
for (val = 0; val < v.size () && F.isZero (v[val]); val++) ;
if (v.size () == 0 || val == v.size ())
output << "0";
for (i = (int)v.size () - 1; i >= 0; i--) {
if (F.isZero (v[(size_t)i]))
continue;
if (!F.isOne (v[(size_t)i]) || i == 0)
F.write (output, v[(size_t)i]);
if (i > 0)
output << " x^" << i;
if (i > (int) val)
output << " + ";
}
output << endl;
}
template <class Field, class Blackbox, class Polynomial, class Vector>
LinBox::BlasVector <Field> &
applyPoly (const Field &F,
Vector &w,
const Blackbox &A,
const Polynomial &phi,
const Vector &v)
{
LinBox::VectorDomain <Field> VD (F);
Vector z(F);
int i;
LinBox::VectorWrapper::ensureDim (z, A.rowdim ());
VD.mul (w, v, phi[phi.size () - 1]);
for (i = (int)phi.size () - 2; i >= 0; i--) {
A.apply (z, w);
VD.axpy (w, phi[(size_t)i], v, z);
}
return w;
}
/* Evaluate polynomial at a whole vector of points */
template <class Field, class Polynomial, class Vector>
Vector &
multiEvalPoly (const Field &F,
Vector &w,
const Polynomial &phi,
const Vector &v)
{
typename Field::Element tmp;
int i;
size_t j;
w.resize (v.size ());
for (j = 0; j < v.size (); j++)
w[(size_t)j] = phi[phi.size () - 1];
for (i = (int)phi.size () - 2; i >= 0; i--) {
for (j = 0; j < v.size (); j++) {
F.axpy (tmp, w[(size_t)j], v[(size_t)j], phi[(size_t)i]);
w[(size_t)j] = tmp;
}
}
return w;
}
/* Interpolate polynomial evaluated at a vector of points using Lagrange
* interpolants */
template <class Field, class Polynomial>
Polynomial &
interpolatePoly (const Field &F,
Polynomial &f,
const LinBox::BlasVector<Field> &x,
const LinBox::BlasVector<Field> &y)
{
typedef LinBox::BlasVector<Field> Vector;
int n = (int)x.size ();
// NB I leave one element in g always initialized to 0 as the ficticious
// negative-first coefficient. This streamlines some of the code.
static const int g_FUDGE = 1;
Vector g(F,(size_t)(n + g_FUDGE));
F.assign (g[0], F.zero);
typename Field::Element gk, c1, c2;
int i, j, k, d;
f.resize ((size_t)n);
for (i = 0; i < n; i++)
F.assign(f[(size_t)i], F.zero);
for (j = 0; j < n; j++) {
F.assign (g[0 + g_FUDGE], F.one);
// d is the current degree of the Lagrange interpolant. i is the
// current index in the array of x-coordonites
for (d = 0, i = 0; d < n - 1; d++, i++) {
if (i == j) i++;
// Compute coefficients of this factor.
F.sub (c1, x[(size_t)j], x[(size_t)i]);
F.invin (c1);
F.mul (c2, c1, x[(size_t)i]);
F.negin (c2);
// Initialize the next element of the Lagrange interpolant
F.assign (g[(size_t)(d + 1 + g_FUDGE)], F.zero);
// Multiply this factor by the existing partial product
for (k = d + 1 + g_FUDGE; k >= g_FUDGE; k--) {
F.mul (gk, g[(size_t)k - 1], c1);
F.axpyin (gk, g[(size_t)k], c2);
g[(size_t)k] = gk;
}
}
for (i = 0; i < n; i++)
F.axpyin (f[(size_t)i], y[(size_t)j], g[(size_t)i + g_FUDGE]);
}
return f;
}
bool isPower (LinBox::integer n, LinBox::integer m);
/* Give an approximation of the value of the incomplete gamma function at a, x,
* to within the tolerance tol */
extern inline double incompleteGamma (double a, double x, double tol);
/* Give the value of the chi-squared cumulative density function for given
* value of chi_sqr and the given degrees of freedom */
double chiSquaredCDF (double chi_sqr, double df);
#ifdef LinBoxTestOnly
#include "test-common.inl"
#endif
#endif // __LINBOX_test_common_H
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|