1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/* tests/test-dense.C
* Copyright (C) 2001, 2002 Bradford Hovinen
*
* Written by Bradford Hovinen <hovinen@cis.udel.edu>
* Modified by Zhendong Wan <wan@cis.udel.edu>
*
* --------------------------------------------------------
*
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*
*/
/*! @file tests/test-dense.C
* @ingroup tests
* @brief no doc
* @test NO DOC
*/
// something currently commented out
#include "linbox/linbox-config.h"
#include <iostream>
#include <fstream>
#include <cstdio>
#include "linbox/util/commentator.h"
#include "linbox/ring/modular.h"
#include "linbox/matrix/dense-matrix.h"
#include "test-common.h"
#include "test-generic.h"
using namespace LinBox;
/* Test 1: Identity matrix in dense representation
*
* Construct a dense representation of an n x n identity matrix and check
* whether the output of its application to a series of random vectors is equal
* to the input.
*
* F - Field over which to perform computations
* n - Dimension to which to make matrix
* iterations - Number of random vectors to which to apply identity inverse
*
* Return true on success and false on failure
*/
template <class Field>
static bool testIdentity (Field &F, size_t n, int iterations = 1)
{
typedef DenseVector<Field> Vector;
typedef DenseMatrix<Field> Base;
typedef DenseMatrix<Field> Blackbox;
commentator().start ("Testing identity apply", "testIdentity", (unsigned int)iterations);
bool ret = true;
// bool iter_passed = true;
Blackbox I(F, n, n);
// Matrix K(I);
//typename Field::Element x; F.init(x);
//F.write(std::cout, K.getEntry(x, i, j)) << std::endl;
//Matrix L(K);
for (size_t i = 0; i < n; i++)
I.setEntry (i, i, F.one);
Vector v(F,n), w(F,n);
typename Field::RandIter r (F);
for (int i = 0; i < iterations; i++) {
char buf[80];
snprintf (buf, 80, "Iteration %d", i);
commentator().start (buf);
bool iter_passed = true;
for (size_t j = 0; j < n; j++)
r.random (v[(size_t)j]);
ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
report << "Input vector: ";
printVector<Field> (F, report, v);
I.apply (w, v);
printVector<Field> (F, report, w);
Base J (I);
Blackbox KK( J);
KK.apply (w, v);
report << "Output vector: ";
printVector<Field> (F, report, w);
for (size_t j = 0; j < (size_t)n; j++)
if (!F.areEqual (w[(size_t)j], v[(size_t)j]))
ret = iter_passed = false;
if (!iter_passed)
commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
<< "ERROR: Vectors are not equal" << endl;
commentator().stop ("done");
commentator().progress ();
}
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testIdentity");
return ret;
}
/* Test 2: Application of Vandermonde matrix in dense representation
*
* Computes a random Vandermonde matrix and applies it to a series of random
* vectors. The random vectors contain the coefficients of polynomials over the
* ground field. The output of the application is the result of evaluating these
* polynomials at the points given by the second column of the matrix. This
* function interpolates (using Lagrange interpolants) the evaluation points to
* get the original polynomials and checks whether the coefficients match the
* original vectors.
*
* F - Field over which to perform computations
* n - Dimension to which to make matrix
* iterations - Number of random diagonal matrices to construct
* N - Number of random vectors to which to apply random Vandermonde matrix
*
* Return true on success and false on failure
*/
template <class Field>
static bool testVandermonde (Field &F, size_t n, int iterations = 1, int N = 1)
{
typedef DenseVector<Field> Vector;
typedef DenseMatrix <Field> Blackbox;
commentator().start ("Testing Vandermonde apply", "testVandermonde", (unsigned int)iterations);
bool ret = true;
bool inner_iter_passed;
int i, j, k;
Blackbox V(F, n, n);
Vector x(F,n), v(F,n), y(F,n), f(F,n);
typename Field::RandIter r (F);
typename Field::Element t;
for (i = 0; i < iterations; i++) {
char buf[80];
snprintf (buf, 80, "Iteration %d", i);
commentator().start (buf);
/* Evaluation points */
for (j = 0; j < (int) n; j++) {
bool flag = true;
// Make sure points are all distinct
while (flag) {
r.random (x[(size_t)j]);
flag = false;
for (k = 0; k < j; k++)
if (F.areEqual (x[(size_t)j], x[(size_t)k]))
flag = true;
}
}
ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
report << "Evaluation points: ";
printVector<Field> (F, report, x);
/* Build the Vandermonde matrix */
for (j = 0; j < (int) n; j++) {
F.assign(t, F.one);
for (k = 0; k < (int) n; k++) {
V.setEntry ((size_t)j,(size_t) k, t);
F.mulin (t, x[(size_t)j]);
}
}
for (j = 0; j < (int) N; j++) {
inner_iter_passed = true;
/* Random vector of evaluation results */
for (k = 0; k < (int)n; k++)
r.random (v[(size_t)k]);
report << "Input vector: ";
printVector<Field> (F, report, v);
/* w should now be a vector of polynomial evaluations */
V.apply (y, v);
report << "Output vector: ";
printVector<Field> (F, report, y);
/* Polynomial interpolation to check whether w is correct */
interpolatePoly (F, f, x, y);
report << "Interpolation results: ";
printVector<Field> (F, report, f);
for (k = 0; k < (int) n; k++)
if (!F.areEqual (f[(size_t)k], v[(size_t)k]))
ret = inner_iter_passed = false;
if (!inner_iter_passed)
commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
<< "ERROR: Vectors are not equal" << endl;
}
commentator().stop ("done");
commentator().progress ();
}
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testVandermonde");
return ret;
}
/* Test 3: Random linearity
*
* Construct a random dense matrix and a submatrix thereof. Call testLinearity
* in test-generic.h to test that the submatrix is a linear operator
*
* F - Field over which to perform computations
* n - Dimension to which to make matrices
* iterations - Number of iterations to run
* N - Number of random vectors to which to apply
*
* Return true on success and false on failure
*/
template <class Field>
static bool testRandomLinearity ( const Field & F,
VectorStream<DenseVector<Field> > &A_stream,
VectorStream<DenseVector<Field> > &v1_stream,
VectorStream<DenseVector<Field> > &v2_stream)
{
commentator().start ("Testing random linearity", "testRandomLinearity", v1_stream.size ());
DenseMatrix<Field> A (F, A_stream);
bool ret = testLinearity (A, v1_stream, v2_stream);
A_stream.reset ();
v1_stream.reset ();
v2_stream.reset ();
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testRandomLinearity");
return ret;
}
/* Test 4: Random transpose
*
* Construct a random dense matrix and a submatrix thereof. Call testLinearity
* in test-generic.h to test that the submatrix is a linear operator
*
* F - Field over which to perform computations
* n - Dimension to which to make matrices
* iterations - Number of iterations to run
* N - Number of random vectors to which to apply
*
* Return true on success and false on failure
*/
template <class Field>
static bool testRandomTranspose (const Field &F,
VectorStream<DenseVector<Field> > &A_stream,
VectorStream<DenseVector<Field> > &v1_stream,
VectorStream<DenseVector<Field> > &v2_stream)
{
commentator().start ("Testing random transpose", "testRandomTranspose", v1_stream.size ());
DenseMatrix<Field> A (F, A_stream);
bool ret = testTranspose (F, A, v1_stream, v2_stream);
A_stream.reset ();
v1_stream.reset ();
v2_stream.reset ();
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testRandomTranspose");
return ret;
}
int main (int argc, char **argv)
{
bool pass = true;
static size_t n = 10;
static integer q = 101;
static int iterations = 2; // was 100
//static int N = 1;
static Argument args[] = {
{ 'n', "-n N", "Set dimension of test matrices to NxN.", TYPE_INT, &n },
{ 'q', "-q Q", "Operate over the \"field\" GF(Q) [1].", TYPE_INTEGER, &q },
{ 'i', "-i I", "Perform each test for I iterations.", TYPE_INT, &iterations },
END_OF_ARGUMENTS
};
typedef Givaro::Modular<uint32_t> Field;
parseArguments (argc, argv, args);
Field F (q); Field::RandIter gen(F);
commentator().start("Dense matrix black box test suite", "DenseMatrix");
commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDepth (5);
commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDetailLevel (Commentator::LEVEL_UNIMPORTANT);
RandomDenseStream<Field> A_stream (F, gen, n, n);
RandomDenseStream<Field> v1_stream (F, gen, n, (unsigned int)iterations);
RandomDenseStream<Field> v2_stream (F, gen, n, (unsigned int)iterations);
if (!testIdentity (F, n)) pass = false;
if (!testVandermonde (F, n)) pass = false;
DenseMatrix<Field> A(F, A_stream);
if (!testBlackbox(A)) pass = false;
//if (!testRandomLinearity (F, A_stream, v1_stream, v2_stream)) pass = false;
//if (!testRandomTranspose (F, A_stream, v1_stream, v2_stream)) pass = false;
commentator().stop("dense matrix black box test suite");
return pass ? 0 : -1;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|