File: test-dense.C

package info (click to toggle)
linbox 1.7.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,940 kB
  • sloc: cpp: 108,392; lisp: 5,469; makefile: 1,345; sh: 1,244; csh: 131; python: 74; perl: 2
file content (360 lines) | stat: -rw-r--r-- 10,284 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/* tests/test-dense.C
 * Copyright (C) 2001, 2002 Bradford Hovinen
 *
 * Written by Bradford Hovinen <hovinen@cis.udel.edu>
 * Modified by Zhendong Wan <wan@cis.udel.edu>
 *
 * --------------------------------------------------------
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *
 */


/*! @file  tests/test-dense.C
 * @ingroup tests
 * @brief  no doc
 * @test NO DOC
 */



// something currently commented out
#include "linbox/linbox-config.h"

#include <iostream>
#include <fstream>

#include <cstdio>

#include "linbox/util/commentator.h"
#include "linbox/ring/modular.h"
#include "linbox/matrix/dense-matrix.h"

#include "test-common.h"
#include "test-generic.h"

using namespace LinBox;

/* Test 1: Identity matrix in dense representation
 *
 * Construct a dense representation of an n x n identity matrix and check
 * whether the output of its application to a series of random vectors is equal
 * to the input.
 *
 * F - Field over which to perform computations
 * n - Dimension to which to make matrix
 * iterations - Number of random vectors to which to apply identity inverse
 *
 * Return true on success and false on failure
 */

template <class Field>
static bool testIdentity (Field &F, size_t n, int iterations = 1)
{
	typedef DenseVector<Field> Vector;
	typedef DenseMatrix<Field> Base;
	typedef DenseMatrix<Field>           Blackbox;

	commentator().start ("Testing identity apply", "testIdentity", (unsigned int)iterations);

	bool ret = true;
	// bool iter_passed = true;

	Blackbox I(F, n, n);
	// Matrix K(I);
	//typename Field::Element x; F.init(x);
	//F.write(std::cout, K.getEntry(x, i, j)) << std::endl;
	//Matrix L(K);


	for (size_t i = 0; i < n; i++)
		I.setEntry (i, i, F.one);

	Vector v(F,n), w(F,n);
	typename Field::RandIter r (F);

	for (int i = 0; i < iterations; i++) {
		char buf[80];
		snprintf (buf, 80, "Iteration %d", i);
		commentator().start (buf);

		bool iter_passed = true;

		for (size_t j = 0; j < n; j++)
			r.random (v[(size_t)j]);

		ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
		report << "Input vector: ";
		printVector<Field> (F, report, v);

		I.apply (w, v);
		printVector<Field> (F, report, w);

		Base J (I);
		Blackbox KK( J);
		KK.apply (w, v);
		report << "Output vector: ";
		printVector<Field> (F, report, w);

		for (size_t j = 0; j < (size_t)n; j++)
			if (!F.areEqual (w[(size_t)j], v[(size_t)j]))
				ret = iter_passed = false;

		if (!iter_passed)
			commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
				<< "ERROR: Vectors are not equal" << endl;

		commentator().stop ("done");
		commentator().progress ();
	}

	commentator().stop (MSG_STATUS (ret), (const char *) 0, "testIdentity");

	return ret;
}

/* Test 2: Application of Vandermonde matrix in dense representation
 *
 * Computes a random Vandermonde matrix and applies it to a series of random
 * vectors. The random vectors contain the coefficients of polynomials over the
 * ground field. The output of the application is the result of evaluating these
 * polynomials at the points given by the second column of the matrix. This
 * function interpolates (using Lagrange interpolants) the evaluation points to
 * get the original polynomials and checks whether the coefficients match the
 * original vectors.
 *
 * F - Field over which to perform computations
 * n - Dimension to which to make matrix
 * iterations - Number of random diagonal matrices to construct
 * N - Number of random vectors to which to apply random Vandermonde matrix
 *
 * Return true on success and false on failure
 */

template <class Field>
static bool testVandermonde (Field &F, size_t n, int iterations = 1, int N = 1)
{
	typedef DenseVector<Field> Vector;
	typedef DenseMatrix <Field> Blackbox;

	commentator().start ("Testing Vandermonde apply", "testVandermonde", (unsigned int)iterations);

	bool ret = true;
	bool inner_iter_passed;

	int i, j, k;

	Blackbox V(F, n, n); 

	Vector x(F,n), v(F,n), y(F,n), f(F,n);
	typename Field::RandIter r (F);
	typename Field::Element t;

	for (i = 0; i < iterations; i++) {
		char buf[80];
		snprintf (buf, 80, "Iteration %d", i);
		commentator().start (buf);

		/* Evaluation points */
		for (j = 0; j < (int) n; j++) {
			bool flag = true;

			// Make sure points are all distinct
			while (flag) {
				r.random (x[(size_t)j]);
				flag = false;
				for (k = 0; k < j; k++)
					if (F.areEqual (x[(size_t)j], x[(size_t)k]))
						flag = true;
			}
		}

		ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
		report << "Evaluation points: ";
		printVector<Field> (F, report, x);

		/* Build the Vandermonde matrix */
		for (j = 0; j < (int) n; j++) {
			F.assign(t, F.one);

			for (k = 0; k < (int) n; k++) {
				V.setEntry ((size_t)j,(size_t) k, t);
				F.mulin (t, x[(size_t)j]);
			}
		}

		for (j = 0; j < (int) N; j++) {
			inner_iter_passed = true;

			/* Random vector of evaluation results */
			for (k = 0; k < (int)n; k++)
				r.random (v[(size_t)k]);

			report << "Input vector: ";
			printVector<Field> (F, report, v);

			/* w should now be a vector of polynomial evaluations */
			V.apply (y, v);

			report << "Output vector: ";
			printVector<Field> (F, report, y);

			/* Polynomial interpolation to check whether w is correct */
			interpolatePoly (F, f, x, y);

			report << "Interpolation results: ";
			printVector<Field> (F, report, f);

			for (k = 0; k < (int) n; k++)
				if (!F.areEqual (f[(size_t)k], v[(size_t)k]))
					ret = inner_iter_passed = false;

			if (!inner_iter_passed)
				commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
					<< "ERROR: Vectors are not equal" << endl;
		}

		commentator().stop ("done");
		commentator().progress ();
	}

	commentator().stop (MSG_STATUS (ret), (const char *) 0, "testVandermonde");

	return ret;
}

/* Test 3: Random linearity
 *
 * Construct a random dense matrix and a submatrix thereof. Call testLinearity
 * in test-generic.h to test that the submatrix is a linear operator
 *
 * F - Field over which to perform computations
 * n - Dimension to which to make matrices
 * iterations - Number of iterations to run
 * N - Number of random vectors to which to apply
 *
 * Return true on success and false on failure
 */

template <class Field>
static bool testRandomLinearity ( const Field & F,
				 VectorStream<DenseVector<Field> > &A_stream,
				 VectorStream<DenseVector<Field> > &v1_stream,
				 VectorStream<DenseVector<Field> > &v2_stream)
{
	commentator().start ("Testing random linearity", "testRandomLinearity", v1_stream.size ());

	DenseMatrix<Field> A (F, A_stream);

	bool ret = testLinearity (A, v1_stream, v2_stream);

	A_stream.reset ();
	v1_stream.reset ();
	v2_stream.reset ();

	commentator().stop (MSG_STATUS (ret), (const char *) 0, "testRandomLinearity");

	return ret;
}

/* Test 4: Random transpose
 *
 * Construct a random dense matrix and a submatrix thereof. Call testLinearity
 * in test-generic.h to test that the submatrix is a linear operator
 *
 * F - Field over which to perform computations
 * n - Dimension to which to make matrices
 * iterations - Number of iterations to run
 * N - Number of random vectors to which to apply
 *
 * Return true on success and false on failure
 */

template <class Field>
static bool testRandomTranspose (const Field                                 &F,
				 VectorStream<DenseVector<Field> > &A_stream,
				 VectorStream<DenseVector<Field> > &v1_stream,
				 VectorStream<DenseVector<Field> > &v2_stream)
{
	commentator().start ("Testing random transpose", "testRandomTranspose", v1_stream.size ());

	DenseMatrix<Field> A (F, A_stream);

	bool ret = testTranspose (F, A, v1_stream, v2_stream);

	A_stream.reset ();
	v1_stream.reset ();
	v2_stream.reset ();

	commentator().stop (MSG_STATUS (ret), (const char *) 0, "testRandomTranspose");

	return ret;
}


int main (int argc, char **argv)
{
	bool pass = true;

	static size_t n = 10;
	static integer q = 101;
	static int iterations = 2; // was 100
	//static int N = 1;

	static Argument args[] = {
		{ 'n', "-n N", "Set dimension of test matrices to NxN.", TYPE_INT,     &n },
		{ 'q', "-q Q", "Operate over the \"field\" GF(Q) [1].", TYPE_INTEGER, &q },
		{ 'i', "-i I", "Perform each test for I iterations.",   TYPE_INT,     &iterations },
		END_OF_ARGUMENTS
	};

	typedef Givaro::Modular<uint32_t> Field;

	parseArguments (argc, argv, args);
	Field F (q); Field::RandIter gen(F);

	commentator().start("Dense matrix black box test suite", "DenseMatrix");

	commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDepth (5);
	commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDetailLevel (Commentator::LEVEL_UNIMPORTANT);

	RandomDenseStream<Field> A_stream (F, gen, n, n);
	RandomDenseStream<Field> v1_stream (F, gen, n, (unsigned int)iterations);
	RandomDenseStream<Field> v2_stream (F, gen, n, (unsigned int)iterations);

	if (!testIdentity    (F, n)) pass = false;
	if (!testVandermonde (F, n)) pass = false;
	DenseMatrix<Field> A(F, A_stream);
	if (!testBlackbox(A)) pass = false;
	//if (!testRandomLinearity (F, A_stream, v1_stream, v2_stream)) pass = false;
	//if (!testRandomTranspose (F, A_stream, v1_stream, v2_stream)) pass = false;

	commentator().stop("dense matrix black box test suite");
	return pass ? 0 : -1;
}

// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s