1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* test-ntl-sylvester.C
* Copyright (C) 2003 Austin Lobo, B. David Saunders
* Copyright (C) LinBox
*
* Tests for Sylvester matrix specification with ntl Arithmetic,
* for 2 polynomials in one variable.
* LinBox version 2003
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*
* Function definitions for block Lanczos iteration
*-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*/
/*! @file tests/test-ntl-sylvester.C
* @ingroup tests
* @brief no doc.
* @test no doc
*/
#include <linbox/linbox-config.h>
#include <iostream>
#include <fstream>
#include "linbox/ring/ntl.h"
#include "linbox/integer.h"
#include "linbox/blackbox/ntl-sylvester.h"
#include "test-generic.h"
using namespace std;
using namespace LinBox;
int main(int argc, char* argv[])
{
LinBox::commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDepth (2);
ostream &report = LinBox::commentator().report(
LinBox::Commentator::LEVEL_IMPORTANT,
INTERNAL_DESCRIPTION );
bool pass = true;
static size_t n = 1000;
static int64_t q = 134217689;
// q = 101;
static int iterations = 1;
static Argument args[] = {
{ 'n', "-n N", "Set dimension of test matrices to NxN.", TYPE_INT, &n },
// { 'q', "-q Q", "Operate over the \"field\" GF(Q) [1].",
// TYPE_INT, &q },
{ 'i', "-i I", "Perform each test for I iterations.",
TYPE_INT, &iterations },
END_OF_ARGUMENTS
};
LinBox::parseArguments (argc, argv, args);
//------ Read q and construct F(q)
NTL::ZZ modulus; // prime modulus
modulus = q;
size_t m = n-3;
// std::cout << std::endl << "Enter a prime number for the modulus of the field: ";
// std::cin >> modulus;
report << "The modulus is " << modulus << std::endl;
report << "Dimension (m+n) is " << m+n << std::endl;
NTL::ZZ_p::init(modulus); // NOTE: This is essential for using NTL
LinBox::commentator().start("Sylvester black box test suite", "Sylvester");
report <<"Dimension(m+n)= " << m+n << "\t modulus= " << q << endl;
// typedef Givaro::ZRing<NTL::ZZ_p> Field;
typedef LinBox::NTL_ZZ_p Field;
// typedef Field::Element element;
typedef LinBox::BlasVector<Field> Vector;
// Now we are using the NTL wrapper as the field, call the instance F
Field F(q); // XXX same bug ?
// Use the default constructor to create a matrix
// LinBox::Sylvester<Field> T(F);
// Use a special constructor to construct a matrix of dim TSIZE
Vector pdata(F,n), qdata(F,m);
report << "\n\tpx:=";
for (size_t i=pdata.size()-1; i > 0; i-- ) {
pdata[i] = NTL::random_ZZ_p() ;
report << pdata[i] << "*X^" << i << " + ";
}
pdata[0] = NTL::random_ZZ_p() ;
report << pdata[0];
report << std::endl;
report << "\nqx is: \n\t";
for (size_t i=qdata.size()-1; i > 0; i-- ) {
qdata[i] = NTL::random_ZZ_p() ;
report << qdata[i] << "*X^" << i << " + ";
}
qdata[0] = NTL::random_ZZ_p() ;
report << qdata[0];
report << std::endl;
// LinBox::Sylvester<Field> TT(F,pdata,qdata);
LinBox::Sylvester<Field> TT(pdata,qdata);
report << "The matrix is: " << std::endl;
TT.print(report);
#if 0 /* this is not a test */
// TT.printcp( "cpout.txt");
// TT.print(report);
report << std::endl;
// Create an interesting input vector called idata
Vector idata(F, TT.sysdim() ), odata( F, TT.sysdim() );
report << "A random col vector:\npx:=[" << std::endl;
for (unsigned int i=0; i < idata.size(); i++) {
idata[i] = NTL::random_ZZ_p() ;
if (i!= idata.size()-1) report << idata[i] << ",";
}
report << "]\n";
TT.apply(odata, idata);
report << "\n\nTesting apply :--------------------- \nResult is[";
for (unsigned int i = 0; i < odata.size(); i++)
report << odata[i] << " ";
report << "]\n";
// Apply the matrix to the vector just created
// Testing the apply function when both input and output are over ZZ_p
report << "Testing apply Transpose:----------------- \nResult is[";
TT.applyTranspose(odata, idata);
for (unsigned int i = 0; i < odata.size(); i++)
report << odata[i] << " ";
#endif
pass = testBlackboxNoRW(TT);
report <<"<====\tDone Sylvester matrix black box test suite" << endl;
LinBox::commentator().stop(MSG_STATUS (pass),"Sylvester black box test suite");
return pass ? 0 : -1;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|