1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/**
* Copyright (C) LinBox
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
/**
* This is testing the serialization routines,
* by serializing, then unserializing and checking equality.
*
* Basic types (integer and floating points) are checked first.
* Custom LinBox classes (BlasMatrix, SparseMatrix, ...) are checked too.
*/
#include "linbox/matrix/random-matrix.h"
#include "linbox/util/serialization.h"
using namespace LinBox;
template <class T>
bool test(T& output, const T& input)
{
// The vector of bytes that will store the serialized input
// is created with a certain size of uninitialized data.
// This is used to check that the unserialized does
// understand the offset start.
uint64_t randomOffset = rand() % 100;
std::vector<uint8_t> bytes(randomOffset);
auto bytesWritten = serialize(bytes, input);
if (bytesWritten == 0u) {
return false;
}
auto bytesRead = unserialize(output, bytes, randomOffset);
if (bytesRead != bytesWritten) {
return false;
}
return true;
}
template <class T>
bool check_basic_type(const T& input)
{
T output;
if (!test(output, input)) {
return false;
}
if (output != input) {
return false;
}
return true;
}
template <class T>
bool test_basic_type()
{
// @note This little trick is to ensure that 64 bits type
// have not just their lower bits written.
T input = rand();
input *= rand();
input += rand();
return check_basic_type(input);
}
bool test_integer()
{
// Generating a big integer to ensure it is spreading over multiple limbs.
Integer input(1);
for (int i = 0; i < 20; ++i) {
input *= (1 + rand());
}
input += rand();
return check_basic_type(input);
}
// Check matrix equality after serialize/unserialize.
template <class Field, class Matrix>
bool check_matrix(const Field& F, const Matrix& input)
{
Matrix output(F);
if (!test(output, input)) {
return false;
}
if (output.rowdim() != input.rowdim() || output.coldim() != input.coldim()) {
return false;
}
for (auto i = 0u; i < input.rowdim(); i++) {
for (auto j = 0u; j < input.coldim(); j++) {
if (!F.areEqual(input.getEntry(i, j), output.getEntry(i, j))) {
return false;
}
}
}
return true;
}
// Check vector equality after serialize/unserialize.
template <class Field, class Vector>
bool check_vector(const Field& F, const Vector& input)
{
Vector output(F);
if (!test(output, input)) {
return false;
}
if (output.size() != input.size()) {
return false;
}
for (auto i = 0u; i < input.size(); i++) {
if (!F.areEqual(input[i], output[i])) {
return false;
}
}
return true;
}
// Tests serialibility of matrices and vectors of specified field elements.
template <class Field>
bool test_field(const Integer& q)
{
// --- Test dense matrix
Field F(q);
BlasMatrix<Field> denseMatrix(F, 10 + rand() % 100, 10 + rand() % 100);
// Fill denseMatrix with random values!
typename Field::RandIter R(F);
RandomDenseMatrix<typename Field::RandIter, Field> RandMat(F, R);
RandMat.random(denseMatrix);
check_matrix(F, denseMatrix);
// --- Test sparse matrix
SparseMatrix<Field> sparseMatrix(F, denseMatrix.rowdim(), denseMatrix.coldim());
for (auto i = 0u; i < denseMatrix.rowdim(); i++) {
for (auto j = 0u; j < denseMatrix.coldim(); j++) {
if (rand() % 2 == 0) {
sparseMatrix.setEntry(i, j, denseMatrix.getEntry(i, j));
}
}
}
check_matrix(F, sparseMatrix);
// --- Test dense vector
BlasVector<Field> denseVector(F, denseMatrix.rowdim());
for (auto i = 0u; i < denseMatrix.rowdim(); i++) {
denseVector[i] = denseMatrix.getEntry(i, 0);
}
check_vector(F, denseVector);
return true;
}
int main(int argc, char** argv)
{
Integer q = 101;
uint64_t seed = time(nullptr);
bool loop = false;
Argument as[] = {{'q', "-q Q", "Set the field characteristic (-1 for random).", TYPE_INTEGER, &q},
{'s', "-s seed", "Set seed for the random generator", TYPE_UINT64, &seed},
{'l', "-loop Y/N", "run the test in an infinite loop.", TYPE_BOOL, &loop},
END_OF_ARGUMENTS};
FFLAS::parseArguments(argc, argv, as);
srand(seed);
bool ok = true;
do {
ok = ok && test_basic_type<int8_t>();
ok = ok && test_basic_type<uint8_t>();
ok = ok && test_basic_type<int16_t>();
ok = ok && test_basic_type<uint16_t>();
ok = ok && test_basic_type<int32_t>();
ok = ok && test_basic_type<uint32_t>();
ok = ok && test_basic_type<int64_t>();
ok = ok && test_basic_type<uint64_t>();
ok = ok && test_basic_type<float>();
ok = ok && test_basic_type<double>();
ok = ok && test_integer();
ok = ok && test_field<Givaro::ZRing<Integer>>(q);
ok = ok && test_field<Givaro::Modular<float>>(q);
ok = ok && test_field<Givaro::Modular<double>>(q);
} while (loop && ok);
if (!ok) std::cerr << "Failed with seed: " << seed << std::endl;
return !ok;
}
|