1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/* tests/test-sum.C
* Copyright (C) 2002 Bradford Hovinen
*
* Written by Bradford Hovinen <hovinen@cis.udel.edu>
*
* ------------------------------------
*
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*.
*/
/*! @file tests/test-sum.C
* @ingroup tests
*
* @brief no doc
*
* @test no doc.
*/
#include "linbox/linbox-config.h"
#include <iostream>
#include <fstream>
#include "linbox/util/commentator.h"
#include "linbox/vector/stream.h"
#include "linbox/field/archetype.h"
#include "linbox/ring/modular.h"
//#include "linbox/field/givaro.h"
#ifdef __LINBOX_HAVE_NTL
#include "linbox/ring/ntl.h"
#endif
#include "linbox/vector/vector-domain.h"
#include "linbox/blackbox/diagonal.h"
#include "linbox/blackbox/scalar-matrix.h"
#include "linbox/blackbox/sum.h"
#include "test-common.h"
#include "test-generic.h"
using namespace LinBox;
template <class Field2, class Blackbox>
static bool testBBrebind (const Field2 &F2, const Blackbox& B)
{
typedef typename Blackbox::template rebind<Field2>::other FBlackbox;
FBlackbox A(B, F2);
return testBlackboxNoRW(A);
}
/* Test 1: Application of zero matrix onto random vectors
*
* Construct a random diagonal matrix and its opposite, then construct
* the sum of the two matrices. Apply to random vectors and check that
* the result is zero.
*
* F - Field over which to perform computations
* n - Dimension to which to make matrix
*
* Return true on success and false on failure
*/
template <class Field1, class Field2, class Vector>
static bool testZeroApply (Field1 &F1, Field2 &F2, VectorStream<Vector> &stream1, VectorStream<Vector> &stream2)
{
commentator().start ("Testing zero apply", "testZeroApply", stream1.m ());
bool ret = true;
Vector d1(F1), d2(F1), v(F1), w(F1)
// , zero
;
VectorDomain<Field1> VD (F1);
// VectorWrapper::ensureDim (zero, stream1.dim ());
VectorWrapper::ensureDim (d1, stream1.dim ());
VectorWrapper::ensureDim (d2, stream1.dim ());
VectorWrapper::ensureDim (v, stream1.dim ());
VectorWrapper::ensureDim (w, stream2.dim ());
while (stream1) {
commentator().startIteration ((unsigned)stream1.j ());
bool iter_passed = true;
stream1.next (d1);
VD.mul (d2, d1, F1.mOne);
Diagonal <Field1> D1 (d1), D2 (d2);
Sum <Diagonal<Field1>,Diagonal <Field1> > A (&D1, &D2);
ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
report << "Diagonal matrix: ";
VD.write (report, d1);
report << endl;
report << "Negative diagonal matrix: ";
VD.write (report, d2);
report << endl;
stream2.reset ();
while (stream2) {
stream2.next (w);
report << "Input vector: ";
VD.write (report, w);
report << endl;
A.apply (v, w);
report << "Output vector: ";
VD.write (report, v);
report << endl;
if (!VD.isZero (v))
ret = iter_passed = false;
}
if (!iter_passed)
commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_ERROR)
<< "ERROR: Vector is not zero" << endl;
commentator().stop ("done");
commentator().progress ();
ret = ret && testBBrebind(F2, A);
}
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testZeroApply");
return ret;
}
#if 0
/* Test 2: Random transpose
*
* Compute a random diagonal matrix and use the transpose test in test-generic.h
* to check consistency of transpose apply.
*
* F - Field over which to perform computations
* n - Dimension to which to make matrix
* iterations - Number of random vectors to which to apply matrix
*
* Return true on success and false on failure
*/
template <class Field>
static bool testRandomTranspose (Field &F, size_t n, int iterations)
{
typedef vector <typename Field::Element> Vector;
commentator().start ("Testing random transpose", "testRandomTranspose", iterations);
Vector d(n);
typename Field::RandIter r (F);
for (int i = 0; i < n; i++)
r.random (d[i]);
Diagonal <Field, Vector> D (F, d);
ostream &report = commentator().report (Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
report << "Diagonal vector: ";
printVector<Field> (F, report, d);
bool ret = testTranspose<Field> (F, D, iterations);
commentator().stop (MSG_STATUS (ret), (const char *) 0, "testRandomTranspose");
return ret;
}
#endif
int main (int argc, char **argv)
{
bool pass = true;
static size_t n = 10;
static integer q1 = 101;
static integer q2 = 1009;
static int iterations1 = 2;
static int iterations2 = 1;
static Argument args[] = {
{ 'n', "-n N", "Set dimension of test matrices to NxN.", TYPE_INT, &n },
{ 'q', "-q Q", "Operate over the \"field\" GF(Q) [1].", TYPE_INTEGER, &q1 },
{ 'z', "-z Q", "Operate over the \"field\" GF(Q) [1].", TYPE_INTEGER, &q2 },
{ 'i', "-i I", "Perform each test for I iterations.", TYPE_INT, &iterations1 },
{ 'j', "-j J", "Apply test matrix to J vectors.", TYPE_INT, &iterations2 },
END_OF_ARGUMENTS
};
#ifdef __LINBOX_HAVE_NTL
// typedef Givaro::ZRing<NTL::zz_p> Field;
typedef NTL_zz_p Field;
// NTL::zz_p::init(q1); // Done in the constructor
#else
typedef Givaro::Modular<double> Field ;
//typedef Givaro::Modular<int32_t> Field ;
#endif
Field F1(q1); Field::RandIter gen(F1);
Givaro::Modular<double> F2(q2);
//Givaro::Modular<int32_t> F2(q2);
// typedef BlasVector<Field> Vector;
parseArguments (argc, argv, args);
commentator().start("Sum black box test suite", "sum");
// Make sure some more detailed messages get printed
commentator().getMessageClass (INTERNAL_DESCRIPTION).setMaxDepth (2);
RandomDenseStream<Field> stream1 (F1, gen, n, iterations1), stream2 (F1, gen, n, iterations2);
if (!testZeroApply (F1, F2, stream1, stream2)) pass = false;
n = 10;
RandomDenseStream<Field> stream3 (F1, gen, n, iterations1), stream4 (F1, gen, n, iterations2);
// Vector d1(n), d2(n);
// stream3.next (d1);
// stream4.next (d2);
// Diagonal <Field, Vector> D1 (F, d1), D2 (F, d2);
Field::Element d; F1.init(d, 5);
ScalarMatrix<Field> D1(F1, 10, 10, d), D2(F1, 10, 10, d);
typedef ScalarMatrix<Field> Blackbox;
Sum <Blackbox, Blackbox> A (D1, D2);
pass = pass && testBlackboxNoRW(A) && testBBrebind(F2, A);
Sum <Blackbox, Blackbox> Aref (&D1, &D2);
pass = pass && testBlackboxNoRW(Aref) && testBBrebind(F2, A);
commentator().stop("Sum black box test suite");
return pass ? 0 : -1;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|