File: tokenize.c

package info (click to toggle)
link-grammar 4.7.4-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 5,872 kB
  • ctags: 3,004
  • sloc: ansic: 20,018; sh: 10,181; cpp: 5,221; asm: 2,017; java: 1,314; makefile: 389; perl: 274; yacc: 104
file content (1049 lines) | stat: -rw-r--r-- 28,956 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
/*************************************************************************/
/* Copyright (c) 2004                                                    */
/* Daniel Sleator, David Temperley, and John Lafferty                    */
/* Copyright (c) 2009 Linas Vepstas                                      */
/* All rights reserved                                                   */
/*                                                                       */
/* Use of the link grammar parsing system is subject to the terms of the */
/* license set forth in the LICENSE file included with this software,    */
/* and also available at http://www.link.cs.cmu.edu/link/license.html    */
/* This license allows free redistribution and use in source and binary  */
/* forms, with or without modification, subject to certain conditions.   */
/*                                                                       */
/*************************************************************************/

#ifndef _WIN32
#include <langinfo.h>
#endif
#include <limits.h>

#include "build-disjuncts.h"
#include "error.h"
#include "externs.h"
#include "read-dict.h"
#include "regex-morph.h"
#include "spellcheck.h"
#include "string-set.h"
#include "structures.h"
#include "tokenize.h"
#include "utilities.h"
#include "word-utils.h"

#define MAX_STRIP 10

/* These are no longer in use, but are read from the 4.0.affix file */
/* I've left these here, as an axample of what to expect. */
/*static char * strip_left[] = {"(", "$", "``", NULL}; */
/*static char * strip_right[] = {")", "%", ",", ".", ":", ";", "?", "!", "''", "'", "'s", NULL};*/

#define ENTITY_MARKER   "<marker-entity>"
#define COMMON_ENTITY_MARKER   "<marker-common-entity>"

/**
 * is_common_entity - Return true if word is a common noun or adjective
 * Common nouns and adjectives are typically used in corporate entity
 * names -- e.g. "Sun State Bank" -- "sun", "state" and "bank" are all 
 * common nouns.
 */
static int is_common_entity(Dictionary dict, const char * str)
{
	if (word_contains(dict, str, COMMON_ENTITY_MARKER) == 1)
		return TRUE;
	return FALSE;
}

static int is_entity(Dictionary dict, const char * str)
{
	const char * regex_name;
	if (word_contains(dict, str, ENTITY_MARKER) == 1)
		return TRUE;
	regex_name = match_regex(dict, str);
	if (NULL == regex_name) return FALSE;
	return word_contains(dict, regex_name, ENTITY_MARKER);
}


/**
 * Return TRUE if word is a proper name.
 * XXX This is a cheap hack that works only in English, and is 
 * broken for German!  We need to replace this with something
 * language-specific. 
 *
 * Basically, if word starts with upper-case latter, we assume
 * its a proper name, and that's that.
 */
static int is_proper_name(const char * word)
{
	return is_utf8_upper(word);
}

/* Create a string containing anything that can be construed to
 * be a quotation mark. This works, because link-grammar is more
 * or less ignorant of quotes at this time.
 */
static const wchar_t *list_of_quotes(void) 
{
#define QUSZ 50
	static wchar_t wqs[QUSZ];
	mbstate_t mbs;
	/* Single-quotes are used for abbreviations, don't mess with them */
	/* const char * qs = "\"\'«»《》【】『』‘’`„“"; */
	const char * qs = "\"«»《》【】『』`„“";

	const char *pqs = qs;

	memset(&mbs, 0, sizeof(mbs));

	mbsrtowcs(wqs, &pqs, QUSZ, &mbs);

	return wqs;
}

/**
 * Return TRUE if the character is a quotation character.
 */
static int is_quote(wchar_t wc)
{
	static const wchar_t *quotes = NULL;
	if (NULL == quotes) quotes = list_of_quotes();

	if (NULL !=  wcschr(quotes, wc)) return TRUE;
	return FALSE;
}

/**
 * Returns true if the word can be interpreted as a number.
 * The ":" is included here so we allow "10:30" to be a number.
 * We also allow U+00A0 "no-break space"
 */
static int is_number(const char * s)
{
	mbstate_t mbs;
	int nb = 1;
	wchar_t c;
	if (!is_utf8_digit(s)) return FALSE;

	memset(&mbs, 0, sizeof(mbs));
	while ((*s != 0) && (0 < nb))
	{
		nb = mbrtowc(&c, s, MB_CUR_MAX, &mbs);
		if (iswdigit(c)) { s += nb; }

		/* U+00A0 no break space */
		else if (0xa0 == c) { s += nb; }

		else if ((*s == '.') || (*s == ',') || (*s == ':')) { s++; }
		else return FALSE;
	}
	return TRUE;
}

/**
 * Returns true if the word contains digits. 
 */
static int contains_digits(const char * s)
{
	mbstate_t mbs;
	int nb = 1;
	wchar_t c;

	memset(&mbs, 0, sizeof(mbs));
	while ((*s != 0) && (0 < nb))
	{
		nb = mbrtowc(&c, s, MB_CUR_MAX, &mbs);
		if (iswdigit(c)) return TRUE;
		s += nb;
	}
	return FALSE;
}

/** 
 * The string s is the next word of the sentence. 
 * Do not issue the empty string.  
 * Return false if too many words or the word is too long. 
 */
static int issue_sentence_word(Sentence sent, const char * s)
{
	if (*s == '\0') return TRUE;
	if (strlen(s) > MAX_WORD)
	{
		err_ctxt ec;
		ec.sent = sent;
		err_msg(&ec, Error, 
		   "Error separating sentence. The word \"%s\" is too long.\n"
		   "A word can have a maximum of %d characters.\n", s, MAX_WORD);
		return FALSE;
	}

	if (sent->length >= MAX_SENTENCE)
	{
		err_ctxt ec;
		ec.sent = sent;
		err_msg(&ec, Error, 
		   "Error separating sentence. The sentence has too many words.\n");
		return FALSE;
	}

	strcpy(sent->word[sent->length].string, s);

	/* Now we record whether the first character of the word is upper-case.
	   (The first character may be made lower-case
	   later, but we may want to get at the original version) */
	if (is_utf8_upper(s)) sent->word[sent->length].firstupper=1;
	else sent->word[sent->length].firstupper = 0;
	sent->length++;
	return TRUE;
}

/*
	Here's a summary of how subscripts are handled:

	Reading the dictionary:

	  If the last "." in a string is followed by a non-digit character,
	  then the "." and everything after it is considered to be the subscript
	  of the word.

	  The dictionary reader does not allow you to have two words that
	  match according to the criterion below.  (so you can't have
	  "dog.n" and "dog")

	  Quote marks are used to allow you to define words in the dictionary
	  which would otherwise be considered part of the dictionary, as in

	   ";": {@Xca-} & Xx- & (W+ or Qd+) & {Xx+};
	   "%" : (ND- & {DD-} & <noun-sub-x> &
		   (<noun-main-x> or B*x+)) or (ND- & (OD- or AN+));

	Rules for chopping words from the input sentence:

	   First the prefix chars are stripped off of the word.  These
	   characters are "(" and "$" (and now "``")

	   Now, repeat the following as long as necessary:

		   Look up the word in the dictionary.
		   If it's there, the process terminates.

		   If it's not there and it ends in one of the right strippable
		   strings (see "strip_right") then remove the strippable string
		   and make it into a separate word.

		   If there is no strippable string, then the process terminates.

	Rule for defining subscripts in input words:

	   The subscript rule is followed just as when reading the dictionary.

	When does a word in the sentence match a word in the dictionary?

	   Matching is done as follows: Two words with subscripts must match
	   exactly.  If neither has a subscript they must match exactly.  If one
	   does and one doesn't then they must match when the subscript is
	   removed.  Notice that this is symmetric.

	So, under this system, the dictonary could have the words "Ill" and
	also the word "Ill."  It could also have the word "i.e.", which could be
	used in a sentence.
*/

#undef		MIN
#define MIN(a, b)  (((a) < (b)) ? (a) : (b))

static int boolean_reg_dict_lookup(Dictionary dict, const char * word)
{
	const char * regex_name;
	if (boolean_dictionary_lookup(dict, word)) return TRUE;

	regex_name = match_regex(dict, word);
	if (NULL == regex_name) return FALSE;

	return boolean_dictionary_lookup(dict, regex_name);
}

static int downcase_is_in_dict(Dictionary dict, char * word)
{
	int i, rc;
	char low[MB_LEN_MAX];
	char save[MB_LEN_MAX];
	wchar_t c;
	int nbl, nbh;
	mbstate_t mbs, mbss;

	if (!is_utf8_upper(word)) return FALSE;

	memset(&mbs, 0, sizeof(mbs));
	memset(&mbss, 0, sizeof(mbss));

	nbh = mbrtowc (&c, word, MB_CUR_MAX, &mbs);
	c = towlower(c);
	nbl = wctomb_check(low, c, &mbss);
	if (nbh != nbl)
	{
		prt_error("Warning: can't downcase multi-byte string: %s\n", word);
		return FALSE;
	}

	/* Downcase */
	for (i=0; i<nbl; i++) { save[i] = word[i]; word[i] = low[i]; }

	/* Look it up, then restore old value */
	rc = boolean_reg_dict_lookup(dict, word);
	for (i=0; i<nbh; i++) { word[i] = save[i]; }

	return rc; 
}

/**
 * w points to a string, wend points to the char one after the end.  The
 * "word" w contains no blanks.  This function splits up the word if
 * necessary, and calls "issue_sentence_word()" on each of the resulting
 * parts.  The process is described above.  Returns TRUE if OK, FALSE if
 * too many punctuation marks or other separation error.
 */
static int separate_word(Sentence sent, Parse_Options opts,
                         const char *w, const char *wend,
                         int is_first_word, int quote_found)
{
	size_t sz;
	int i, j, len;
	int r_strippable=0, l_strippable=0, u_strippable=0;
	int s_strippable=0, p_strippable=0;
	int  n_r_stripped, s_stripped;
	int word_is_in_dict, s_ok;
	int issued = FALSE;

	int found_number = 0;
	int n_r_stripped_save;
	const char * wend_save;

	const char ** strip_left = NULL;
	const char ** strip_right = NULL;
	const char ** strip_units = NULL;
	const char ** prefix = NULL;
	const char ** suffix = NULL;
	char word[MAX_WORD+1];
	char newword[MAX_WORD+1];

	const char *r_stripped[MAX_STRIP];  /* these were stripped from the right */

	/* First, see if we can already recognize the word as-is. If
	 * so, then we are done. Else we'll try stripping prefixes, suffixes.
	 */
	sz = MIN(wend-w, MAX_WORD);
	strncpy(word, w, sz);
	word[sz] = '\0';
	word_is_in_dict = FALSE;

	if (boolean_reg_dict_lookup(sent->dict, word))
		word_is_in_dict = TRUE;
	else if (is_first_word && downcase_is_in_dict (sent->dict,word))
		word_is_in_dict = TRUE;

	if (word_is_in_dict)
	{
		return issue_sentence_word(sent, word);
	}

	/* Set up affix tables.  */
	if (sent->dict->affix_table != NULL)
	{
		Dictionary dict = sent->dict->affix_table;
		r_strippable = dict->r_strippable;
		l_strippable = dict->l_strippable;
		u_strippable = dict->u_strippable;
		p_strippable = dict->p_strippable;
		s_strippable = dict->s_strippable;

		strip_left = dict->strip_left;
		strip_right = dict->strip_right;
		strip_units = dict->strip_units;
		prefix = dict->prefix;
		suffix = dict->suffix;
	}

	/* Strip off punctuation, etc. on the left-hand side. */
	/* XXX FIXME: this fails in certain cases: e.g.
	 * "By the '50s, he was very prosperous."
	 * where the leading quote is striped, and then "50s," cannot be
	 * found in the dict. Next, the comma is removed, and "50s" is still
	 * not in the dict ... the trick was that the comma should be 
	 * right-stripped first, then the possible quotes. 
	 * More generally, link-grammar does not support multiple possible
	 * tokenizations.
	 */
	for (;;)
	{
		for (i=0; i<l_strippable; i++)
		{
			/* This is UTF8-safe, I beleive ... */
			sz = strlen(strip_left[i]);
			if (strncmp(w, strip_left[i], sz) == 0)
			{
				if (!issue_sentence_word(sent, strip_left[i])) return FALSE;
				w += sz;
				break;
			}
		}
		if (i == l_strippable) break;
	}

	/* Its possible that the token consisted entirely of
	 * left-punctuation, in which case, it has all been issued.
	 * So -- we're done, return.
	 */
	if (w >= wend) return TRUE;

	/* Now w points to the string starting just to the right of
	 * any left-stripped characters.
	 * stripped[] is an array of numbers, indicating the index
	 * numbers (in the strip_right array) of any strings stripped off;
	 * stripped[0] is the number of the first string stripped off, etc.
	 * When it breaks out of this loop, n_stripped will be the number
	 * of strings stripped off.
	 */
	for (n_r_stripped = 0; n_r_stripped < MAX_STRIP; n_r_stripped++) 
	{
		sz = MIN(wend-w, MAX_WORD);
		strncpy(word, w, sz);
		word[sz] = '\0';
		if (wend == w) break;  /* it will work without this */

		if (boolean_reg_dict_lookup(sent->dict, word))
		{
			word_is_in_dict = TRUE;
			break;
		}

		/* This could happen if it's a word after a colon, also! */
		if (is_first_word && downcase_is_in_dict (sent->dict, word))
		{
			word_is_in_dict = TRUE;
			break;
		}

		for (i=0; i < r_strippable; i++)
		{
			len = strlen(strip_right[i]);

			/* the remaining w is too short for a possible match */
			if ((wend-w) < len) continue;
			if (strncmp(wend-len, strip_right[i], len) == 0)
			{
				r_stripped[n_r_stripped] = strip_right[i];
				wend -= len;
				break;
			}
		}
		if (i == r_strippable) break;
	}

	/* Is there a number in the word? If so, then search for
	 * trailing units suffixes.
	 */
	if ((FALSE == word_is_in_dict) && contains_digits(word))
	{
		/* Same as above, but with a twist: the only thing that can
		 * preceed a units suffix is a number. This is so that we can
		 * split up things like "12ft" (twelve feet) but not split up
		 * things like "Delft blue". Multiple passes allow for
		 * constructions such as 12sq.ft.
		 */
		n_r_stripped_save = n_r_stripped;
		wend_save = wend;
		for (; n_r_stripped < MAX_STRIP; n_r_stripped++) 
		{
			size_t sz = MIN(wend-w, MAX_WORD);
			strncpy(word, w, sz);
			word[sz] = '\0';
			if (wend == w) break;  /* it will work without this */

			/* Number */
			if (is_number(word))
			{
				found_number = 1;
				break;
			}

			for (i=0; i < u_strippable; i++)
			{
				len = strlen(strip_units[i]);

				/* the remaining w is too short for a possible match */
				if ((wend-w) < len) continue;
				if (strncmp(wend-len, strip_units[i], len) == 0)
				{
					r_stripped[n_r_stripped] = strip_units[i];
					wend -= len;
					break;
				}
			}
			if (i == u_strippable) break;
		}

		/* The root *must* be a number! */
		if (0 == found_number)
		{
			wend = wend_save;
			n_r_stripped = n_r_stripped_save;
		}
	}

	/* Now we strip off suffixes...w points to the remaining word, 
	 * "wend" to the end of the word. */

	s_stripped = -1;
	strncpy(word, w, MIN(wend-w, MAX_WORD));
	word[MIN(wend-w, MAX_WORD)] = '\0';

	/* Umm, double-check, if need be ... !?? */
	if (FALSE == word_is_in_dict)
	{
		if (boolean_reg_dict_lookup(sent->dict, word))
			word_is_in_dict = TRUE;
		else if (is_first_word && downcase_is_in_dict (sent->dict,word))
			word_is_in_dict = TRUE;
	}

	if (FALSE == word_is_in_dict)
	{
		j=0;
		for (i=0; i <= s_strippable; i++)
		{
			s_ok = 0;
			/* Go through once for each suffix; then go through one 
			 * final time for the no-suffix case */
			if (i < s_strippable)
			{
				len = strlen(suffix[i]);

				/* The remaining w is too short for a possible match */
				if ((wend-w) < len) continue;
				if (strncmp(wend-len, suffix[i], len) == 0) s_ok=1;
			}
			else
				len = 0;

			if (s_ok || i == s_strippable)
			{
				strncpy(newword, w, MIN((wend-len)-w, MAX_WORD));
				newword[MIN((wend-len)-w, MAX_WORD)] = '\0';

				/* Check if the remainder is in the dictionary;
				 * for the no-suffix case, it won't be */
				if (boolean_reg_dict_lookup(sent->dict, newword))
				{
					if ((verbosity>1) && (i < s_strippable))
						printf("Splitting word into two: %s-%s\n", newword, suffix[i]);
					s_stripped = i;
					wend -= len;
					strncpy(word, w, MIN(wend-w, MAX_WORD));
					word[MIN(wend-w, MAX_WORD)] = '\0';
					word_is_in_dict = TRUE;
					break;
				}

				/* If the remainder isn't in the dictionary, 
				 * try stripping off prefixes */
				else
				{
					for (j=0; j<p_strippable; j++)
					{
						if (strncmp(w, prefix[j], strlen(prefix[j])) == 0)
						{
							int sz = MIN((wend-len)-(w+strlen(prefix[j])), MAX_WORD);
							strncpy(newword, w+strlen(prefix[j]), sz);
							newword[sz] = '\0';
							if (boolean_reg_dict_lookup(sent->dict, newword))
							{
								if ((verbosity>1) && (i < s_strippable))
									printf("Splitting word into three: %s-%s-%s\n",
										prefix[j], newword, suffix[i]);
								if (!issue_sentence_word(sent, prefix[j])) return FALSE;
								if (i < s_strippable) s_stripped = i;
								wend -= len;
								w += strlen(prefix[j]);
								sz = MIN(wend-w, MAX_WORD);
								strncpy(word, w, sz);
								word[sz] = '\0';
								word_is_in_dict = TRUE;
								break;
							}
						}
					}
				}
				if (j != p_strippable) break;
			}
		}
	}

	/* word is now what remains after all the stripping has been done */
	issued = FALSE;

	/* If n_r_stripped exceed max, the "word" is most likely a long
	 * sequence of periods.  Just accept it as an unknown "word", 
	 * and move on.
	 */
	if (n_r_stripped >= MAX_STRIP)
	{
		n_r_stripped = 0;
		word_is_in_dict = TRUE;
	}

	if (quote_found == TRUE) sent->post_quote[sent->length] = 1;

#if defined HAVE_HUNSPELL || defined HAVE_ASPELL
	/* If the word is still not being found, then it might be 
	 * a run-on of two words. Ask the spell-checker to split
	 * the word in two, if possible. Do this only if the word
	 * is not a proper name, and if spell-checking is enabled.
	 */
	if ((FALSE == word_is_in_dict) && 
	    TRUE == opts->use_spell_guess &&
	    sent->dict->spell_checker &&
	    (FALSE == is_proper_name(word)))
	{
		char **alternates = NULL;
		char *sp = NULL;
		char *wp;
		int j, n;
		n = spellcheck_suggest(sent->dict->spell_checker, &alternates, word);
		for (j=0; j<n; j++)
		{
			/* Uhh, XXX this is not utf8 safe! */
			sp = strchr(alternates[j], ' ');
			if (sp) break;
		}

		if (sp) issued = TRUE;

		wp = alternates[j];
		while (sp)
		{
			*sp = 0x0;
			if (!issue_sentence_word(sent, wp)) return FALSE;
			wp = sp+1;
			sp = strchr(wp, ' ');
			if (NULL == sp)
			{
				if (!issue_sentence_word(sent, wp)) return FALSE;
			}
		}
		if (alternates) spellcheck_free_suggest(alternates, n);
	}
#endif /* HAVE_HUNSPELL */

	if (FALSE == issued)
	{
		if (!issue_sentence_word(sent, word)) return FALSE;
	}

	if (s_stripped != -1)
	{
	  if (!issue_sentence_word(sent, suffix[s_stripped])) return FALSE;
	}

	for (i = n_r_stripped-1; i>=0; i--)
	{
		if (!issue_sentence_word(sent, r_stripped[i])) return FALSE;
	}

	return TRUE;
}

/**
 * The string s has just been read in from standard input.
 * This function breaks it up into words and stores these words in
 * the sent->word[] array.  Returns TRUE if all is well, FALSE otherwise.
 * Quote marks are treated just like blanks.
 */
int separate_sentence(Sentence sent, Parse_Options opts)
{
	const char *t;
	int is_first, quote_found;
	Dictionary dict = sent->dict;
	mbstate_t mbs;
	const char * s = sent->orig_sentence;

	memset(sent->post_quote, 0, MAX_SENTENCE*sizeof(int));
	sent->length = 0;

	if (dict->left_wall_defined)
		if (!issue_sentence_word(sent, LEFT_WALL_WORD)) return FALSE;

	/* Reset the multibyte shift state to the initial state */
	memset(&mbs, 0, sizeof(mbs));

	is_first = TRUE;
	for(;;) 
	{
		int isq;
		wchar_t c;
		int nb = mbrtowc(&c, s, MB_CUR_MAX, &mbs);
		quote_found = FALSE;

		if (0 > nb) goto failure;

		/* Skip all whitespace. Also, ignore *all* quotation marks.
		 * XXX This is sort-of a hack, but that is because LG does
		 * not have any intelligent support for quoted character
		 * strings at this time.
		 */
		isq = is_quote (c);
		if (isq) quote_found = TRUE;
		while (iswspace(c) || isq)
		{
			s += nb;
			nb = mbrtowc(&c, s, MB_CUR_MAX, &mbs);
			if (0 == nb) break;
			if (0 > nb) goto failure;
			isq = is_quote (c);
			if (isq) quote_found = TRUE;
		}

		if (*s == '\0') break;

		t = s;
		nb = mbrtowc(&c, t, MB_CUR_MAX, &mbs);
		if (0 > nb) goto failure;
		while (!iswspace(c) && !is_quote(c) && (c != 0) && (nb != 0))
		{
			t += nb;
			nb = mbrtowc(&c, t, MB_CUR_MAX, &mbs);
			if (0 > nb) goto failure;
		}

		if (!separate_word(sent, opts, s, t, is_first, quote_found)) return FALSE;
		is_first = FALSE;
		s = t;
		if (*s == '\0') break;
	}

	if (dict->right_wall_defined)
		if (!issue_sentence_word(sent, RIGHT_WALL_WORD)) return FALSE;

	return (sent->length > dict->left_wall_defined + dict->right_wall_defined);

failure:
	prt_error("Unable to process UTF8 input string in current locale %s\n",
		nl_langinfo(CODESET));
	return FALSE;
}

/**
 * Build the word expressions, and add a tag to the word to indicate
 * that it was guessed by means of regular-expression matching.
 * Also, add a subscript to the resulting word to indicate the
 * rule origin.
 */
static void tag_regex_string(Sentence sent, int i, const char * type)
{
	char str[MAX_WORD+1];
	char * t;
	X_node * e;
	sent->word[i].x = build_word_expressions(sent->dict, type);
	for (e = sent->word[i].x; e != NULL; e = e->next)
	{
		t = strchr(e->string, '.');
		e->string = sent->word[i].string;
		if (NULL != t)
		{
			snprintf(str, MAX_WORD, "%.50s[!].%.5s", e->string, t+1);
		}
		else
		{
			snprintf(str, MAX_WORD, "%.50s", e->string);
		}
		e->string = string_set_add(str, sent->string_set);
	}
}

/**
 * Puts into word[i].x the expression for the unknown word 
 * the parameter s is the word that was not in the dictionary 
 * it massages the names to have the corresponding subscripts 
 * to those of the unknown words
 * so "grok" becomes "grok[?].v" 
 */
static void handle_unknown_word(Sentence sent, int i, char * s)
{
	char *t;
	X_node *d;
	char str[MAX_WORD+1];

	sent->word[i].x = build_word_expressions(sent->dict, UNKNOWN_WORD);
	if (sent->word[i].x == NULL)
		assert(FALSE, "UNKNOWN_WORD should have been there");

	for (d = sent->word[i].x; d != NULL; d = d->next)
	{
		t = strchr(d->string, '.');
		if (t != NULL)
		{
			snprintf(str, MAX_WORD, "%.50s[?].%.5s", s, t+1);
		}
		else
		{
			snprintf(str, MAX_WORD, "%.50s[?]", s);
		}
		d->string = string_set_add(str, sent->string_set);
	}
}

/**
 * If a word appears to be mis-spelled, then add alternate
 * spellings. Maybe one of those will do ... 
 */
static void guess_misspelled_word(Sentence sent, int i, char * s)
{
	int spelling_ok;
	char str[MAX_WORD+1];
	Dictionary dict = sent->dict;
	X_node *d, *head = NULL;
	int j, n;
	char **alternates = NULL;

	/* Spell-guessing is disabled if no spell-checker is speficified */
	if (NULL == dict->spell_checker)
	{
		handle_unknown_word(sent, i, s);
		return;
	}

	/* If the spell-checker knows about this word, and we don't ... 
	 * Dang. We should fix it  someday. Accept it as such. */
	spelling_ok = spellcheck_test(dict->spell_checker, s);
	if (spelling_ok)
	{
		handle_unknown_word(sent, i, s);
		return;
	}

	/* Else, ask the spell-checker for alternate spellings
	 * and see if these are in the dict. */
	n = spellcheck_suggest(dict->spell_checker, &alternates, s);
	for (j=0; j<n; j++)
	{
		if (boolean_reg_dict_lookup(sent->dict, alternates[j]))
		{
			X_node *x = build_word_expressions(sent->dict, alternates[j]);
			head = catenate_X_nodes(x, head);
		}
	}
	sent->word[i].x = head;
	if (alternates) spellcheck_free_suggest(alternates, n);

	/* Add a [~] to the output to signify that its the result of
	 * guessing. */
	for (d = sent->word[i].x; d != NULL; d = d->next)
	{
		const char * t = strchr(d->string, '.');
		if (t != NULL)
		{
			size_t off = t - d->string;
			strncpy(str, d->string, off);
			str[off] = 0;
			strcat(str, "[~]");
			strcat(str, t);
		}
		else
		{
			snprintf(str, MAX_WORD, "%.50s[~]", s);
		}
		d->string = string_set_add(str, sent->string_set);
	}

	/* If nothing found at all... */
	if (NULL == head)
	{
		handle_unknown_word(sent, i, s);
	}
}

/**
 * Corrects case of first word, fills in other proper nouns, and
 * builds the expression lists for the resulting words.
 *
 * Algorithm:
 * Apply the following step to all words w:
 * If w is in the dictionary, use it.
 * Else if w is identified by regex matching, use the
 * appropriately matched disjunct collection.
 *
 * Now, we correct the first word, w.
 * If w is upper case, let w' be the lower case version of w.
 * If both w and w' are in the dict, concatenate these disjncts.
 * Else if just w' is in dict, use disjuncts of w', together with
 * the CAPITALIZED-WORDS rule.
 * Else leave the disjuncts alone.
 */
int build_sentence_expressions(Sentence sent, Parse_Options opts)
{
	int i, first_word;  /* the index of the first word after the wall */
	char *s, temp_word[MAX_WORD+1];
	const char * regex_name;
	X_node * e;
	Dictionary dict = sent->dict;

	if (dict->left_wall_defined) {
		first_word = 1;
	} else {
		first_word = 0;
	}

	/* The following loop treats all words the same
	 * (nothing special for 1st word) */
	for (i=0; i<sent->length; i++)
	{
		s = sent->word[i].string;
		if (boolean_dictionary_lookup(sent->dict, s))
		{
			sent->word[i].x = build_word_expressions(sent->dict, s);
		}
		else if ((NULL != (regex_name = match_regex(sent->dict, s))) &&
		         boolean_dictionary_lookup(sent->dict, regex_name))
		{
			tag_regex_string(sent, i, regex_name);
		}
		else if (dict->unknown_word_defined && dict->use_unknown_word)
		{
			if (opts->use_spell_guess)
			{
				guess_misspelled_word(sent, i, s);
			}
			else
			{
				handle_unknown_word(sent, i, s);
			}
		}
		else 
		{
			/* The reason I can assert this is that the word
			 * should have been looked up already if we get here.
			 */
			assert(FALSE, "I should have found that word.");
		}
	}

	/* Under certain cases--if it's the first word of the sentence,
	 * or if it follows a colon or a quotation mark--a word that's 
	 * capitalized has to be looked up as an uncapitalized word
	 * (as well as a capitalized word).
	 * XXX This rule is English-language-oriented, and should be
	 * abstracted.
	 */
	for (i=0; i<sent->length; i++)
	{
		if (! (i == first_word ||
		      (i > 0 && strcmp(":", sent->word[i-1].string)==0) || 
		       sent->post_quote[i] == 1)) continue;
		s = sent->word[i].string;

		/* If the lower-case version of this word is in the dictionary, 
		 * then add the disjuncts for the lower-case version. The upper
		 * case version disjuncts had previously come from matching the 
		 * CAPITALIZED-WORDS regex.
		 *
		 * Err .. add the lower-case version only if the lower-case word
		 * is a common noun or adjective; otherwise, *replace* the
		 * upper-case word with the lower-case one.  This allows common
		 * nouns and adjectives to be used for entity names: e.g.
		 * "Great Southern Union declares bankruptcy", allowing Great
		 * to be capitalized, while preventing an upper-case "She" being
		 * used as a proper name in "She declared bankruptcy".
		 *
		 * Arghh. This is still messed up. The capitalized-regex runs
		 * too early, I think. We need to *add* Sue.f (female name Sue)
		 * even though sue.v (the verb "to sue") is in the dict. So 
		 * test for capitalized entity names. Glurg. Too much complexity
		 * here, it seems to me.
		 *
		 * This is actually a great example of a combo of an algorithm
		 * together with a list of words used to determine grammatical
		 * function.
		 */
		if (is_utf8_upper(s))
		{
			const char * lc;
			downcase_utf8_str(temp_word, s, MAX_WORD);
			lc = string_set_add(temp_word, sent->string_set);

			/* The lower-case dict lookup might trigger regex 
			 * matches in the dictionary. We want to avoid these.
			 * e.g. "Cornwallis" triggers both PL-CAPITALIZED_WORDS
			 * and S-WORDS. Since its not an entity, the regex 
			 * matches will erroneously discard the upper-case version.
			 */
			if (boolean_dictionary_lookup(sent->dict, lc))
			{
				if (is_entity(sent->dict,s) ||
				    is_common_entity(sent->dict,lc))
				{
					if (1 < verbosity)
					{
						printf ("Info: First word: %s entity=%d common=%d\n", 
							s, is_entity(sent->dict,s), 
							is_common_entity(sent->dict,lc));
					}
					e = build_word_expressions(sent->dict, lc);
					sent->word[i].x =
						catenate_X_nodes(sent->word[i].x, e);
				}
				else
				{
					if (1 < verbosity)
					{
						printf("Info: First word: %s downcase only\n", lc);
					}
					safe_strcpy(s, lc, MAX_WORD);
					e = build_word_expressions(sent->dict, s);
					free_X_nodes(sent->word[i].x);
					sent->word[i].x = e;
				}
			}
		}
	}

	return TRUE;
}


/**
 * This just looks up all the words in the sentence, and builds
 * up an appropriate error message in case some are not there.
 * It has no side effect on the sentence.  Returns TRUE if all
 * went well.
 *
 * This code is called only is the 'unkown-words' flag is set.
 */
int sentence_in_dictionary(Sentence sent)
{
	int w, ok_so_far;
	char * s;
	Dictionary dict = sent->dict;
	char temp[1024];

	ok_so_far = TRUE;
	for (w=0; w<sent->length; w++)
	{
		s = sent->word[w].string;
		if (!boolean_reg_dict_lookup(dict, s))
		{
			if (ok_so_far)
			{
				safe_strcpy(temp, "The following words are not in the dictionary:", sizeof(temp));
				ok_so_far = FALSE;
			}
			safe_strcat(temp, " \"", sizeof(temp));
			safe_strcat(temp, sent->word[w].string, sizeof(temp));
			safe_strcat(temp, "\"", sizeof(temp));
		}
	}
	if (!ok_so_far)
	{
		err_ctxt ec;
		ec.sent = sent;
		err_msg(&ec, Error, "Error: Sentence not in dictionary\n%s\n", temp);
	}
	return ok_so_far;
}