1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
|
theory
ELF_Relocation_Proof
imports
Main
"~~/src/HOL/Word/Word"
(* X86 model imports *)
"x86-64_model/L3_Theory"
"x86-64_model/X64"
(* ELF model imports *)
"../auto_generated/isabelle/Import_everything"
"../auto_generated/isabelle/Termination"
"../auto_generated/isabelle/Test_image"
begin
section {* Proof-of-concept relocation proof *}
subsection {* Useful definitions *}
text {* Mov an immediate constant into a location in memory. *}
definition mov_constant_to_mem :: "64 word \<Rightarrow> 64 word \<Rightarrow> instruction" where
"mov_constant_to_mem constant addr \<equiv> Zmov (Z_ALWAYS, (Z64, Zrm_i (Zm (None, (ZnoBase, addr)), constant)))"
text {* The "fixed" program (i.e. the program that never changes and is never relocated) which
moves the immediate constant 5 into a fixed address in memory. *}
definition fixed_program :: "nat \<Rightarrow> 8 word list" where
"fixed_program addr \<equiv>
let (addr::64 word) = of_nat addr in
encode (mov_constant_to_mem (5 :: 64 word) addr)"
text {* The program that will be relocated. Moves an immediate constant 5 into some zero'd out
address. The zero'd out address will be "fixed-up" by the relocation process set up in Test_image.thy. *}
definition relocatable_program :: "8 word list" where
"relocatable_program \<equiv>
encode (mov_constant_to_mem (5 :: 64 word) (0 :: 64 word))"
text {* The relocation image that the linker produces internally after relocation. The relocatable
program above has now been relocated. We will use this to populate a memory for the X64 emulation
below. *}
definition relocation_image :: "nat \<Rightarrow> nat \<Rightarrow> Abis.any_abi_feature annotated_memory_image" where
"relocation_image addr data_size \<equiv> img1 addr data_size relocatable_program"
text {* Produce an X64 memory (a map from addresses to bytes) out of a memory image that we will
obtain from the relocation_image above. *}
definition X64_memory_of_memory_image :: "memory_image \<Rightarrow> (nat \<Rightarrow> 8 word)" where
"X64_memory_of_memory_image i addr \<equiv>
(* XXX: must be a better way than this, surely... *)
(let keys = Map.dom i in
let rels = { s. \<exists>k \<in> keys. Some s = i k \<and> addr \<ge> the (startpos s) \<and> addr < the (startpos s) + the (length1 s) } in
if rels = {} then
0
else
let arb = Set.the_elem rels in
let reba = addr - the (startpos arb) in
let byte = List.nth (contents arb) reba in
the byte)"
text {* Produces an initial state for the X64 emulation out of a memory_image (which will be converted
to a memory, per the definition above) and a fixed start address for the instruction pointer. This
start address must match the start addresses of the .text section specified in Test_image.thy). *}
definition load_relocated_program_image :: "(Zeflags \<Rightarrow> bool option) \<Rightarrow> memory_image \<Rightarrow> (Zreg \<Rightarrow> 64 word)
\<Rightarrow> nat \<Rightarrow> X64_state" where
"load_relocated_program_image flags i reg entry_point \<equiv>
\<lparr> EFLAGS = flags
, MEM = \<lambda>a. X64_memory_of_memory_image i (unat a)
, REG = reg
, RIP = of_nat entry_point
, exception = NoException
\<rparr>"
text {* The following is a helper function that creates an association list of memory addresses and
bytes which we will use to set up the initial memory (code) contents of the fixed program's initial
X64 state. *}
fun build_fixed_program_code_memory :: "8 word list \<Rightarrow> nat \<Rightarrow> (nat \<times> 8 word) list" where
"build_fixed_program_code_memory [] addr = []" |
"build_fixed_program_code_memory (x#xs) addr = (addr, x)#build_fixed_program_code_memory xs (Suc addr)"
text {* Build the program memory for the fixed program. *}
definition build_fixed_program_memory :: "nat \<Rightarrow> 8 word list \<Rightarrow> 64 word \<Rightarrow> 8 word" where
"build_fixed_program_memory entry_point program x \<equiv>
let code_mem = map_of (build_fixed_program_code_memory program entry_point) in
(case code_mem (unat x) of
None \<Rightarrow> 0
| Some x \<Rightarrow> x)"
text {* Produces an initial state for the X64 emulation out of the encoded instructions of our fixed
program above, and a fixed start address for the instruction pointer. This start address must match
the start address of the .text section specified in Test_image.thy. *}
definition load_fixed_program_instructions :: "(Zeflags \<Rightarrow> bool option) \<Rightarrow> 8 word list \<Rightarrow>
(Zreg \<Rightarrow> 64 word) \<Rightarrow> nat \<Rightarrow> X64_state" where
"load_fixed_program_instructions flags p reg entry_point \<equiv>
\<lparr> EFLAGS = flags
, MEM = build_fixed_program_memory entry_point p
, REG = reg
, RIP = of_nat entry_point
, exception = NoException
\<rparr>"
text {* An address is "valid" in the correctness statement below whenever it resides within the
bounds of the data section, as expressed in the predicate below, and the bounds of the data section
can be fully described using 4 bytes (the width of the address field for the relocation). *}
definition valid_address :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where
"valid_address data_start data_len addr \<equiv>
data_start \<le> addr \<and> addr < data_start + data_len \<and> data_start + data_len < 4294967296"
text {* We now have our (rather silly) correctness property, which serves to demonstrate that our
definitions are capable of supporting formal proof. If we set the Isabelle execution mechanism up
correctly we could just execute this to obtain our theorem, but we will use proof instead. Creating
two initial states for the X64 emulation out of our fixed and relocated program, we relocate and
demonstrate that the contents of memory are thereafter the same. *}
definition correctness_property :: "bool" where
"correctness_property \<equiv>
\<forall>addr data_size::nat. \<forall>flags :: Zeflags \<Rightarrow> bool option. \<forall>reg :: Zreg \<Rightarrow> 64 word.
let fprogr = fixed_program addr in
let text_start = 4194304 in (* Fixed in Test_image *)
let data_start = 4194316 in (* Fixed in Test_image *)
let offset = addr - data_start in
(* The data section must not be empty, and the total size of that section added to its start address
must not overflow a 64-bit word... *)
1 \<le> data_size \<longrightarrow>
valid_address data_start data_size addr \<longrightarrow>
(\<forall> x \<in> unats 64.
MEM (load_fixed_program_instructions flags fprogr reg text_start) (of_nat x) =
MEM (load_relocated_program_image flags (elements (relocation_image offset data_size)) reg text_start) (of_nat x))"
subsection {* Useful lemmas and technical definitions *}
text {* The majority of the lemmas in this subsection are generic and not really tied to our
proof at all, but can be reused by any proof that uses the linker or the ELF model. Some exceptions
to this include those that are talking about manipulation of concrete addresses which are fairly
specific to this proof. However, the vast majority of the following lemmas are proving properties
of internal data structures inside the linker, or demonstrating that ordering functions are indeed
orders. *}
text {* Useful lemma for converting a valid_address assertion into a range of possible addresses. *}
lemma valid_address_elim:
fixes addr data_size :: "nat"
assumes "1 \<le> data_size" and "valid_address 4194316 data_size addr"
shows "addr = Suc data_size \<or> (0 \<le> data_size \<and> valid_address 4194316 data_size addr)"
using assms unfolding valid_address_def by simp
text {* A technical lemma used for the lemma that immediately follows it. An address that is
strictly less than the 4294967296 (32 bit) limit can fit within 4 bytes (the width of the relocation
address field) when converted to a byte list. *}
lemma natural_to_le_byte_list_limit:
fixes addr :: nat
assumes "addr < 4294967296"
shows "length (natural_to_le_byte_list addr) \<le> 4"
using assms by simp
text {* When we apply relocation we need to show that the address can fit within the four byte
`space' reserved in the instruction's encoding address field. This lemmas converts a valid_address
assertion into a proof that this is the case. *}
lemma valid_address_four_bytes:
fixes data_size addr :: "nat"
assumes "valid_address 4194316 data_size addr"
shows "length (natural_to_le_byte_list addr) \<le> 4"
using assms
apply(simp only: valid_address_def)
apply(rule natural_to_le_byte_list_limit)
apply auto
done
text {* The following is an ugly lemma that is necessary for controlling the unrolling of the for_loop
function used in Anthony's model, otherwise the simplifier loops uncontrollably. *}
lemma for_loop_19_unroll:
fixes act :: "nat \<Rightarrow> 'a \<Rightarrow> (unit \<times> 'a)"
shows "for_loop ((19::nat), 0, act) = (\<lambda>u. case act 19 u of
(u, ua) \<Rightarrow> case act 18 ua of
(u, ua) \<Rightarrow> case act 17 ua of
(u, ua) \<Rightarrow> case act 16 ua of
(u, ua) \<Rightarrow> case act 15 ua of
(u, ua) \<Rightarrow> case act 14 ua of
(u, ua) \<Rightarrow> case act 13 ua of
(u, ua) \<Rightarrow> case act 12 ua of
(u, ua) \<Rightarrow> case act 11 ua of
(u, ua) \<Rightarrow> case act 10 ua of
(u, ua) \<Rightarrow> case act 9 ua of
(u, ua) \<Rightarrow> case act 8 ua of
(u, ua) \<Rightarrow> case act 7 ua of
(u, ua) \<Rightarrow> case act 6 ua of
(u, ua) \<Rightarrow> case act 5 ua of
(u, ua) \<Rightarrow> case act 4 ua of (u, ua) \<Rightarrow> case act 3 ua of (u, ua) \<Rightarrow> case act 2 ua of (u, ua) \<Rightarrow> case act 1 ua of (u, x) \<Rightarrow> act 0 x)"
apply simp
done
text {* These are useful for providing precise control over the simplifier and getting rid of
annoying sums that automation won't budge. Some of these are unneccessary and left over from a
previous proof attempt, now, and should be cleaned up if we had more time to work on this proof... *}
lemma concrete_evaluations:
shows "((word_extract (15::nat) (0::nat) (5::32 word))::16 word) = 5"
and "(word_extract (7::nat) (0::nat) (5::16 word)::8 word) = 5"
and "((word_extract (15::nat) (8::nat) (5::16 word))::8 word) = 0"
and "(word_extract (31::nat) (16::nat) (5::32 word)::16 word) = 0"
and "(word_extract (31::nat) (16::nat) (0::32 word)::16 word) = 0"
and "(word_extract (7::nat) (0::nat) (0::16 word)::8 word) = 0"
and "(word_extract (7::nat) (0::nat) (0::64 word)::8 word) = 0"
and "(word_extract (15::nat) (0::nat) (0::32 word)::16 word) = 0"
and "(word_extract (15::nat) (8::nat) (0::16 word)::8 word) = 0"
and "(word_extract (15::nat) (8::nat) (0::64 word)::8 word) = 0"
and "(word_extract (23::nat) (16::nat) (0::16 word)::8 word) = 0"
and "(word_extract (23::nat) (16::nat) (0::64 word)::8 word) = 0"
and "(word_extract (63::nat) (32::nat) (5::64 word)::32 word) = 0"
and "(word_extract (31::nat) (24::nat) (0::64 word)::8 word) = 0"
and "prefixGroup 72 = 5"
and "to_bl (199::8 word) = [True, True, False, False, False, True, True, True]"
and "to_bl (139::8 word) = [True, False, False, False, True, False, True, True]"
and "to_bl (37::8 word) = [False, False, True, False, False, True, False, True]"
and "to_bl (4::8 word) = [False, False, False, False, False, True, False, False]"
and "of_bl [True] = (1::1 word)"
and "of_bl [False, False] = (0::2 word)"
and "((word_extract 3 0 (72::8 word))::4 word) = (8::4 word)"
and "((8::4 word) !! (0::nat)) = False"
and "((8::4 word) !! (1::nat)) = False"
and "((8::4 word) !! (2::nat)) = False"
and "((8::4 word) !! (3::nat)) = True"
and "nat_to_Zreg (nat (uint ((word_cat (0::1 word) ((of_bl [True, False, False])::3 word))::4 word))) = RSP"
and "nat_to_Zreg (nat (uint ((word_cat (0::1 word) ((of_bl [True, False, True])::3 word))::4 word))) = RBP"
and "nat_to_Zreg (nat (uint ((word_cat (0::1 word) ((of_bl [False, False, False])::3 word))::4 word))) = RAX"
and "18446744071562067968 <=s (5::64 word) \<and> (5::64 word) <=s 2147483647"
and "word_cat (0::1 word) ((word_cat ((word_extract (3::nat) (3::nat) (0::4 word))::1 word) (0::2 word))::3 word) OR (8::4 word) = (8::4 word)"
and "((word_cat (4::4 word) (8::4 word))::8 word) = (72::8 word)"
and "((word_cat (0::2 word) ((word_cat ((word_extract (2::nat) (0::nat) (0::4 word))::3 word) (4::3 word))::6 word))::8 word) = (4::8 word)"
and "((word_extract (15::nat) (8::nat) ((word_extract (15::nat) (0::nat) ((word_extract (31::nat) (0::nat) (5::64 word))::32 word))::16 word))::8 word) = (0::8 word)"
and "((word_extract (7::nat) (0::nat) ((word_extract (15::nat) (0::nat) ((word_extract (31::nat) (0::nat) (5::64 word))::32 word))::16 word))::8 word) = 5"
and "((word_extract (15::nat) (8::nat) ((word_extract (31::nat) (16::nat) ((word_extract (31::nat) (0::nat) (5::64 word))::32 word))::16 word))::8 word) = 0"
and "((word_extract (7::nat) (0::nat) ((word_extract (31::nat) (16::nat) ((word_extract (31::nat) (0::nat) (5::64 word))::32 word))::16 word))::8 word) = (0::8 word)"
and "word_extract (7::nat) (0::nat) (5::64 word) = (5::8 word)"
and "word_extract (15::nat) (8::nat) (5::64 word) = (0::8 word)"
and "word_extract (23::nat) (16::nat) (5::64 word) = (0::8 word)"
and "word_extract (31::nat) (24::nat) (5::64 word) = (0::8 word)"
and "word_extract (31::nat) (0::nat) (5::64 word) = (5::8 word)"
and "(((198::8 word) OR (1::8 word))::8 word) = (199::8 word)"
and "(138::8 word) OR (1::8 word) = (139::8 word)"
and "(word_cat (0::1 word) ((word_cat (0::1 word) (0::2 word))::3 word)::4 word) OR (8::4 word) = (8::4 word)"
and "(4194316::64 word) = (((4194304::64 word) + ((of_nat 12)::64 word))::64 word)"
and "(unat (uint64_land (of_int (int 2)) (of_int (int (65536 * 65536 - 1))))) = 2"
and "((4194304::nat) + unat (4::64 word) - (4194304::nat)) = 4"
and "((8::4 word) = (0::4 word)) = False"
and "(of_nat (4194304::nat) + (5::64 word)) = (4194309::64 word)"
and "((4194304::nat) + unat (7::64 word) - (4194304::nat)) = 7"
and "(of_nat (4194304::nat) + (8::64 word)) = (4194312::64 word)"
and "(of_nat (4194304::nat) + (11::64 word)) = (4194315::64 word)"
and "((4194304::nat) + unat (10::64 word) - (4194304::nat)) = 10"
and "(4194308::nat) - (4194304::nat) = 4"
and "(4194309::nat) - (4194304::nat) = 5"
and "(4194310::nat) - (4194304::nat) = 6"
and "(4194312::nat) - (4194304::nat) = 8"
and "(4194313::nat) - (4194304::nat) = 9"
and "(4194314::nat) - (4194304::nat) = 10"
and "(4194315::nat) - (4194304::nat) = 11"
and "of_nat (4194316) + (1::64 word) = (of_nat (4194317)::64 word)"
and "of_nat (4194316) + (2::64 word) = (of_nat (4194318)::64 word)"
and "of_nat (4194316) + (3::64 word) = (of_nat (4194319)::64 word)"
and "of_nat (4194316) + (4::64 word) = (of_nat (4194320)::64 word)"
and "of_nat (4194316) + (5::64 word) = (of_nat (4194321)::64 word)"
and "of_nat (4194316) + (6::64 word) = (of_nat (4194322)::64 word)"
and "of_nat (4194316) + (7::64 word) = (of_nat (4194323)::64 word)"
and "of_nat (4194316) + (8::64 word) = ((of_nat 4194324)::64 word)"
and "of_nat (4194316) + (9::64 word) = ((of_nat 4194325)::64 word)"
and "of_nat (4194316) + (10::64 word) = ((of_nat 4194326)::64 word)"
and "of_nat (4194316) + (11::64 word) = ((of_nat 4194327)::64 word)"
and "of_nat (4194316) + (12::64 word) = ((of_nat 4194328)::64 word)"
and "of_nat (4194316) + (13::64 word) = ((of_nat 4194329)::64 word)"
and "of_nat (4194316) + (14::64 word) = ((of_nat 4194330)::64 word)"
and "of_nat (4194316) + (15::64 word) = ((of_nat 4194331)::64 word)"
and "of_nat (4194316) + (16::64 word) = ((of_nat 4194332)::64 word)"
and "of_nat (4194316) + (17::64 word) = ((of_nat 4194333)::64 word)"
and "of_nat (4194316) + (18::64 word) = ((of_nat 4194334)::64 word)"
and "of_nat (4194316) + (19::64 word) = ((of_nat 4194335)::64 word)"
and "(4194316::nat) - (4194304::nat) = 12"
and "(4194317::nat) - (4194304::nat) = 13"
and "(4194318::nat) - (4194304::nat) = 14"
and "(4194319::nat) - (4194304::nat) = 15"
and "(4194320::nat) - (4194304::nat) = 16"
and "(4194321::nat) - (4194304::nat) = 17"
and "(4194322::nat) - (4194304::nat) = 18"
and "(4194323::nat) - (4194304::nat) = 19"
and "(4194324::nat) - (4194304::nat) = 20"
and "(4194325::nat) - (4194304::nat) = 21"
and "(4194326::nat) - (4194304::nat) = 22"
and "(4194327::nat) - (4194304::nat) = 23"
and "(4194328::nat) - (4194304::nat) = 24"
and "(18446744071562067968::64 word) <=s (0::64 word) = True"
and "(0::64 word) <=s (2147483647::64 word) = True"
by eval+
text {* This is split out of the lemma above as merging the two together causes a significant
slowdown in tactic application. All of these equalities are only used in a single lemma at the
bottom of the file. *}
lemma concrete_evaluations':
shows "(ucast ((4194316::64 word) AND mask 8)::8 word) = 12"
and "ucast ((16384::64 word) AND mask (8::nat)) = (0::8 word)"
and "ucast ((64::64 word) AND mask (8::nat)) = (64::8 word)"
and "ucast ((4194316::64 word) AND mask (8::nat)) = (12::8 word)"
and "ucast ((4194317::64 word) AND mask (8::nat)) = (13::8 word)"
and "ucast ((4194318::64 word) AND mask (8::nat)) = (14::8 word)"
and "ucast ((4194319::64 word) AND mask (8::nat)) = (15::8 word)"
and "ucast ((4194320::64 word) AND mask (8::nat)) = (16::8 word)"
and "ucast ((4194321::64 word) AND mask (8::nat)) = (17::8 word)"
and "ucast ((4194322::64 word) AND mask (8::nat)) = (18::8 word)"
and "ucast ((4194323::64 word) AND mask (8::nat)) = (19::8 word)"
by eval+
text {* Manipulation of a word+nat offset. Useful when doing precise rewriting. *}
lemma of_nat_manipulate:
"(of_nat m) + (n::'a::len word) = of_nat (m + unat n)"
by simp
text {* More useful equalities for precise simplification. *}
lemma word_to_nat_conversions:
shows "(4194308::64 word) = of_nat 4194308"
and "(4194309::64 word) = of_nat 4194309"
and "(4194310::64 word) = of_nat 4194310"
and "(4194312::64 word) = of_nat 4194312"
and "(4194313::64 word) = of_nat 4194313"
and "(4194314::64 word) = of_nat 4194314"
and "(4194315::64 word) = of_nat 4194315"
and "(4194316::64 word) = of_nat 4194316"
by simp_all
text {* Working around Isabelle's irritating and overly-generic treatment of numerals... *}
lemma numeral_expansion:
shows "(4::nat) = Suc (Suc (Suc (Suc 0)))"
and "(5::nat) = Suc (Suc (Suc (Suc (Suc 0))))"
and "(6::nat) = Suc (Suc (Suc (Suc (Suc (Suc 0)))))"
and "(7::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))"
and "(8::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))"
and "(9::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))"
and "(10::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))"
and "(11::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))"
and "(12::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))"
and "(13::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))"
and "(14::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))"
and "(15::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))"
and "(16::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))"
and "(17::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))"
and "(18::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))"
and "(19::nat) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))"
by simp_all
lemma swap_pairs_rewrite:
shows "swap_pairs {(x1, y1), (x2, y2)} = {(y1, x1), (y2, x2)}"
apply(simp only: swap_pairs_def image_def)
apply auto
done
lemma set_choose_dichotomy:
shows "set_choose {x, y} = x \<or> set_choose {x, y} = y"
unfolding set_choose_def by(metis (mono_tags) insert_iff singletonD someI)
lemma genericCompare_refl:
fixes x :: "'a::order"
shows "(genericCompare (op <) (op =) x y = EQ) = (x = y)"
using assms
apply(simp only: genericCompare_def)
apply simp
done
lemma pairCompare_refl:
assumes "\<forall>p. cmp1 p p = EQ" and "\<forall>q. cmp2 q q = EQ"
shows "pairCompare cmp1 cmp2 (p, q) (p, q) = EQ"
using assms
apply(simp only: pairCompare.simps)
apply(erule allE[where x="p"])
apply simp
done
lemma tripleCompare_refl:
assumes "\<forall>p. cmp1 p p = EQ" and "\<forall>q. cmp2 q q = EQ" and "\<forall>r. cmp3 r r = EQ"
shows "tripleCompare cmp1 cmp2 cmp3 (p, q, r) (p, q, r) = EQ"
using assms
apply(simp only: tripleCompare.simps)
apply(rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp+)
done
lemma quadrupleCompare_refl:
assumes "\<forall>p. cmp1 p p = EQ" and "\<forall>q. cmp2 q q = EQ" and "\<forall>r. cmp3 r r = EQ" and "\<forall>s. cmp4 s s = EQ"
shows "quadrupleCompare cmp1 cmp2 cmp3 cmp4 (p, q, r, s) (p, q, r, s) = EQ"
using assms
apply(simp only: quadrupleCompare.simps)
apply(rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp+)
apply(rule allI, rule allI, rule pairCompare_refl, simp+)
done
lemma quintupleCompare_refl:
assumes "\<forall>p. cmp1 p p = EQ" and "\<forall>q. cmp2 q q = EQ" and "\<forall>r. cmp3 r r = EQ" and "\<forall>s. cmp4 s s = EQ"
and "\<forall>s. cmp5 s s = EQ"
shows "quintupleCompare cmp1 cmp2 cmp3 cmp4 cmp5 (p, q, r, s, t) (p, q, r, s, t) = EQ"
using assms
apply(simp only: quintupleCompare.simps)
apply(rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp+)
apply((rule allI)+, simp add: pairCompare.simps)
done
lemma sextupleCompare_refl:
assumes "\<forall>p. cmp1 p p = EQ" and "\<forall>q. cmp2 q q = EQ" and "\<forall>r. cmp3 r r = EQ" and "\<forall>s. cmp4 s s = EQ"
and "\<forall>p. cmp5 p p = EQ" and "\<forall>p. cmp6 p p = EQ"
shows "sextupleCompare cmp1 cmp2 cmp3 cmp4 cmp5 cmp6 (x1, x2, x3, x4, x5, x6) (x1, x2, x3, x4, x5, x6) = EQ"
using assms
apply(simp only: sextupleCompare.simps)
apply(rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp)
apply(rule allI, case_tac q, clarify, rule pairCompare_refl, simp)
apply simp
done
lemma elf64_relocation_a_compare_refl:
shows "elf64_relocation_a_compare r r = EQ"
apply(simp only: elf64_relocation_a_compare_def)
apply(rule tripleCompare_refl)
apply(rule allI, simp add: genericCompare_refl)+
done
lemma relocSiteCompare_refl:
shows "relocSiteCompare r r = EQ"
apply(simp only: relocSiteCompare_def)
apply(rule quadrupleCompare_refl)
apply(rule allI, rule elf64_relocation_a_compare_refl)
apply(rule allI, simp add: genericCompare_refl)+
done
lemma elf64_symbol_table_entry_compare_refl:
shows "elf64_symbol_table_entry_compare e e = EQ"
apply(simp only: elf64_symbol_table_entry_compare_def)
apply(rule sextupleCompare_refl)
apply(rule allI, simp add: genericCompare_refl)+
done
lemma stringCompare_method_refl:
shows "stringCompare_method s s = EQ"
apply(simp only: stringCompare_method_def)
apply(simp add: ord.lexordp_eq_refl)
done
lemma symRefCompare_refl:
shows "symRefCompare r r = EQ"
apply(simp only: symRefCompare_def)
apply(rule quadrupleCompare_refl) (* XXX: what is happening with the first comparison, here? *)
apply(rule allI, rule stringCompare_method_refl)
apply(rule allI, rule elf64_symbol_table_entry_compare_refl)
apply(rule allI, simp add: genericCompare_refl)+
done
lemma symDefCompare_refl:
shows "symDefCompare d d = EQ"
apply(simp only: symDefCompare_def) (* XXX: what is going on with the first comparison, here? *)
apply(rule quintupleCompare_refl)
apply(rule allI, rule stringCompare_method_refl)
apply(rule allI, rule elf64_symbol_table_entry_compare_refl)
apply(rule allI, simp add: genericCompare_refl)+
done
lemma maybeCompare_refl:
assumes "\<forall>x. cmp x x = EQ"
shows "maybeCompare cmp m m = EQ"
using assms
apply(case_tac m)
apply(simp only: maybeCompare.simps)+
done
lemma relocDecisionCompare_refl:
shows "relocDecisionCompare d d = EQ"
apply(case_tac d; simp)
apply(case_tac x3; simp)
apply(rule tripleCompare_refl)
apply(rule allI, simp add: genericCompare_refl)
apply(rule allI, rule symRefCompare_refl)
apply(rule allI, rule relocSiteCompare_refl)
done
lemma symRefAndRelocSiteCompare_refl:
shows "symRefAndRelocSiteCompare r r = EQ"
apply(simp only: symRefAndRelocSiteCompare_def)
apply(rule tripleCompare_refl)
apply(rule allI, rule symRefCompare_refl)
apply(rule allI, rule maybeCompare_refl)
apply(rule allI, simp only: relocSiteCompare_refl)
apply(rule allI, rule maybeCompare_refl)
apply(rule allI)
apply(case_tac x, clarify)
apply(rule pairCompare_refl)
apply(rule allI, rule relocDecisionCompare_refl)
apply(rule allI, rule maybeCompare_refl)
apply(rule allI, rule symDefCompare_refl)
done
lemma stringCompare_method_Nil_Cons:
shows "stringCompare_method [] (x#xs) = LT"
using stringCompare_method_def by simp
lemma stringCompare_method_Cons_Nil:
shows "stringCompare_method (x#xs) [] = GT"
using stringCompare_method_def by simp
lemma stringCompare_tri:
shows "stringGreater x y \<or> stringLess x y \<or> x = y"
apply(induction x arbitrary: y)
apply(case_tac y; clarify)
apply(simp only: stringLess_def stringCompare_method_Nil_Cons)
apply(case_tac y; clarify)
apply(simp add: stringGreater_def stringLess_def stringCompare_method_Nil_Cons)
apply(simp only: stringGreater_def stringLess_def stringCompare_method_def)
apply simp
apply(smt nat_of_char_eq_iff not_less_iff_gr_or_eq)
done
lemma stringLess_stringGreater:
assumes "stringLess x y"
shows "\<not> stringGreater x y"
using assms unfolding stringLess_def stringGreater_def
apply(induction x arbitrary: y)
apply(case_tac y; clarify)
apply(simp add: stringCompare_method_refl)
apply(simp add: stringCompare_method_Cons_Nil)
apply(case_tac y; clarify)
apply(simp add: stringCompare_method_Cons_Nil)
apply(smt ordering.distinct(1) ordering.distinct(3) stringCompare_method_def)
done
lemma lexicographicCompareBy_refl:
assumes "\<And>x. cmp x x = EQ"
shows "lexicographicCompareBy cmp l l = EQ"
using assms
apply(induction l)
apply(simp_all add: lexicographicCompareBy.simps genericCompare_def)
done
lemma elf64_header_compare_refl:
shows "elf64_header_compare h h = EQ"
apply(case_tac h; clarify)
apply(simp add: elf64_header_compare_def pairCompare.simps)
apply(subst lexicographicCompareBy_refl, simp only: genericCompare_def, simp)+
apply simp
done
lemma compare_elf64_section_header_table_entry_refl:
shows "compare_elf64_section_header_table_entry x x = EQ"
apply(case_tac x; clarify)
apply(simp only: compare_elf64_section_header_table_entry_def)
apply(subst lexicographicCompareBy_refl, simp only: genericCompare_def, simp)
apply simp
done
lemma compare_elf64_program_header_table_entry_refl:
shows "compare_elf64_program_header_table_entry x x = EQ"
apply(case_tac x; clarify)
apply(simp only: compare_elf64_program_header_table_entry_def)
apply(subst lexicographicCompareBy_refl, simp only: genericCompare_def, simp)
apply simp
done
lemma compare_byte_refl:
shows "compare_byte x x = EQ"
apply(simp only: compare_byte_def)
apply(simp add: genericCompare_refl)
done
lemma compare_byte_sequence_refl:
shows "compare_byte_sequence q q = EQ"
apply(case_tac q; clarify)
apply(simp only: compare_byte_sequence_def)
apply(rule lexicographicCompareBy_refl)
apply(rule compare_byte_refl)
done
lemma compare_elf64_interpreted_section_refl:
shows "compare_elf64_interpreted_section x x = EQ"
apply(case_tac x; clarify)
apply(simp only: compare_elf64_interpreted_section_def)
apply(rule tripleCompare_refl)
apply(rule allI, rule lexicographicCompareBy_refl, simp add: genericCompare_def)
apply(rule allI, rule compare_byte_sequence_refl)
apply(rule allI, rule stringCompare_method_refl)
done
lemma compare_elf64_interpreted_segment_refl:
shows " compare_elf64_interpreted_segment x x = EQ"
apply(case_tac x; clarify)
apply(simp only: compare_elf64_interpreted_segment_def)
apply(rule tripleCompare_refl)
apply(rule allI, rule compare_byte_sequence_refl)
apply(rule allI, rule lexicographicCompareBy_refl, simp add: genericCompare_refl)+
done
lemma elfFileFeatureCompare_refl:
shows "elfFileFeatureCompare e e = EQ"
apply(case_tac e; clarify)
apply(simp add: elfFileFeatureCompare.simps elf64_header_compare_refl)
apply(simp add: elfFileFeatureCompare.simps)
apply(subst lexicographicCompareBy_refl, simp add: compare_elf64_section_header_table_entry_refl, rule refl)
apply(simp add: elfFileFeatureCompare.simps)
apply(subst lexicographicCompareBy_refl, simp add: compare_elf64_program_header_table_entry_refl, rule refl)
apply(simp add: elfFileFeatureCompare.simps)
apply(rule pairCompare_refl, rule allI, simp add: genericCompare_refl, rule allI, rule compare_elf64_interpreted_section_refl)
apply(simp add: elfFileFeatureCompare.simps)
apply(rule pairCompare_refl, rule allI, simp add: genericCompare_refl, rule allI, rule compare_elf64_interpreted_segment_refl)
done
lemma tagCompare_refl:
assumes "\<And>y. compare_method dict y y = EQ"
shows "tagCompare dict x x = EQ"
using assms
apply(case_tac x; clarify)
apply(simp_all add: tagCompare.simps symDefCompare_refl symRefAndRelocSiteCompare_refl elfFileFeatureCompare_refl)
done
lemma genericCompare_GT_genericCompare_LT:
fixes x y :: "'a::linorder"
assumes "genericCompare (op <) (op =) x y = GT"
shows "genericCompare (op <) (op =) y x = LT"
using assms antisym_conv3 unfolding genericCompare_def by fastforce
lemma pairCompare_GT_pairCompare_LT:
assumes "pairCompare cmp1 cmp2 x y = GT"
and "\<And>x y. cmp1 x y = GT \<Longrightarrow> cmp1 y x = LT"
and "\<And>x y. cmp2 x y = GT \<Longrightarrow> cmp2 y x = LT"
shows "pairCompare cmp1 cmp2 y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: pairCompare.simps)
apply(case_tac "cmp1 aa a"; case_tac "cmp1 a aa"; auto)
done
lemma pairCompare_LT_pairCompare_GT:
assumes "pairCompare cmp1 cmp2 x y = LT"
and "\<And>x y. cmp1 x y = LT \<Longrightarrow> cmp1 y x = GT"
and "\<And>x y. cmp2 x y = LT \<Longrightarrow> cmp2 y x = GT"
shows "pairCompare cmp1 cmp2 y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: pairCompare.simps)
apply(case_tac "cmp1 aa a"; case_tac "cmp1 a aa"; auto)
done
lemma tripleCompare_LT_tripleCompare_GT:
assumes "tripleCompare cmp1 cmp2 cmp3 x y = LT"
and "\<And>x y. cmp1 x y = LT \<Longrightarrow> cmp1 y x = GT"
and "\<And>x y. cmp2 x y = LT \<Longrightarrow> cmp2 y x = GT"
and "\<And>x y. cmp3 x y = LT \<Longrightarrow> cmp3 y x = GT"
shows "tripleCompare cmp1 cmp2 cmp3 y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: tripleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption, simp)
apply(rule pairCompare_LT_pairCompare_GT, assumption, simp)
apply simp
done
lemma tripleCompare_GT_tripleCompare_LT:
assumes "tripleCompare cmp1 cmp2 cmp3 x y = GT"
and "\<And>x y. cmp1 x y = GT \<Longrightarrow> cmp1 y x = LT"
and "\<And>x y. cmp2 x y = GT \<Longrightarrow> cmp2 y x = LT"
and "\<And>x y. cmp3 x y = GT \<Longrightarrow> cmp3 y x = LT"
shows "tripleCompare cmp1 cmp2 cmp3 y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: tripleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption, simp)
apply(rule pairCompare_GT_pairCompare_LT, assumption, simp)
apply simp
done
lemma maybeCompare_LT_maybeCompare_GT:
assumes "maybeCompare cmp x y = LT" and "\<And>x y. cmp x y = LT \<Longrightarrow> cmp y x = GT"
shows "maybeCompare cmp y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: maybeCompare.simps)
done
lemma maybeCompare_GT_maybeCompare_LT:
assumes "maybeCompare cmp x y = GT" and "\<And>x y. cmp x y = GT \<Longrightarrow> cmp y x = LT"
shows "maybeCompare cmp y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: maybeCompare.simps)
done
lemma genericCompare_LT_genericCompare_GT:
fixes x y :: "'a::order"
assumes "genericCompare (op <) (op =) x y = LT"
shows "genericCompare (op <) (op =) y x = GT"
using assms unfolding genericCompare_def
apply(case_tac "y < x"; simp)
apply(case_tac "x < y"; simp)
apply(case_tac "x = y"; simp)
apply auto
done
lemma stringCompare_method_GT_stringCompare_method_LT:
assumes "stringCompare_method x y = GT"
shows "stringCompare_method y x = LT"
using assms
apply(induction x arbitrary: y)
apply(case_tac y; simp add: stringCompare_method_def)
apply(case_tac y)
apply(simp add: stringCompare_method_def)
apply clarify
apply(simp only: stringCompare_method_def)
apply(subst ord.lexordp_eq.simps)
apply(smt ord.lexordp_eq_simps(4) ordering.distinct(3))
done
lemma stringCompare_method_LT_stringCompare_method_GT:
assumes "stringCompare_method x y = LT"
shows "stringCompare_method y x = GT"
using assms
apply(induction x arbitrary: y)
apply(case_tac y; simp add: stringCompare_method_def)
apply(case_tac y)
apply(simp add: stringCompare_method_def)
apply clarify
apply(simp only: stringCompare_method_def)
apply(simp only: Let_def)
apply(case_tac "ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) (a # x) (aa # list)"; simp)
apply auto
done
lemma elf64_symbol_table_entry_compare_GT_elf64_symbol_table_entry_compare_LT:
assumes "elf64_symbol_table_entry_compare x y = GT"
shows "elf64_symbol_table_entry_compare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_symbol_table_entry_compare_def sextupleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
done
lemma elf64_symbol_table_entry_compare_LT_elf64_symbol_table_entry_compare_GT:
assumes "elf64_symbol_table_entry_compare x y = LT"
shows "elf64_symbol_table_entry_compare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_symbol_table_entry_compare_def sextupleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
done
lemma symDefCompare_GT_symDefCompare_LT:
assumes "symDefCompare x y = GT"
shows "symDefCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: symDefCompare_def quintupleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule elf64_symbol_table_entry_compare_GT_elf64_symbol_table_entry_compare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)+
done
lemma symDefCompare_LT_symDefCompare_GT:
assumes "symDefCompare x y = LT"
shows "symDefCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: symDefCompare_def quintupleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule elf64_symbol_table_entry_compare_LT_elf64_symbol_table_entry_compare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)+
done
lemma symRefCompare_GT_symRefCompare_LT:
assumes "symRefCompare x y = GT"
shows "symRefCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: symRefCompare_def quadrupleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule elf64_symbol_table_entry_compare_GT_elf64_symbol_table_entry_compare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
done
lemma elf64_relocation_a_compare_GT_elf64_relocation_a_compare_LT:
assumes "elf64_relocation_a_compare x y = GT"
shows "elf64_relocation_a_compare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_relocation_a_compare_def tripleCompare.simps pairCompare.simps)
apply(simp only: genericCompare_def)
apply(case_tac "unat elf64_ra_offseta < unat elf64_ra_offset"; simp)
apply(case_tac "elf64_ra_offset = elf64_ra_offseta"; simp)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)+
apply(case_tac "unat elf64_ra_offset < unat elf64_ra_offseta"; simp)
done
lemma relocSiteCompare_GT_relocSiteCompare_LT:
assumes "relocSiteCompare x y = GT"
shows "relocSiteCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: relocSiteCompare_def quadrupleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule elf64_relocation_a_compare_GT_elf64_relocation_a_compare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)+
done
lemma symRefCompare_LT_symRefCompare_GT:
assumes "symRefCompare x y = LT"
shows "symRefCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: symRefCompare_def quadrupleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule elf64_symbol_table_entry_compare_LT_elf64_symbol_table_entry_compare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
done
lemma relocDecisionCompare_GT_relocDecisionCompare_LT:
assumes "relocDecisionCompare x y = GT"
shows "relocDecisionCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp)
apply(rule tripleCompare_GT_tripleCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule symRefCompare_GT_symRefCompare_LT, assumption)
apply(rule relocSiteCompare_GT_relocSiteCompare_LT, assumption)
done
lemma symRefAndRelocSiteCompare_GT_symRefAndRelocSiteCompare_LT:
assumes "symRefAndRelocSiteCompare x y = GT"
shows "symRefAndRelocSiteCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: symRefAndRelocSiteCompare_def tripleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule symRefCompare_GT_symRefCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule maybeCompare_GT_maybeCompare_LT, assumption)
apply(rule relocSiteCompare_GT_relocSiteCompare_LT, assumption)
apply(rule maybeCompare_GT_maybeCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule relocDecisionCompare_GT_relocDecisionCompare_LT, assumption)
apply(rule maybeCompare_GT_maybeCompare_LT, assumption)
apply(rule symDefCompare_GT_symDefCompare_LT, assumption)
done
lemma elf64_relocation_a_compare_LT_elf64_relocation_a_compare_GT:
assumes "elf64_relocation_a_compare x y = LT"
shows "elf64_relocation_a_compare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_relocation_a_compare_def tripleCompare.simps pairCompare.simps)
apply(simp only: genericCompare_def)
apply(case_tac "unat elf64_ra_offseta < unat elf64_ra_offset"; simp)
apply(case_tac "elf64_ra_offset = elf64_ra_offseta"; simp)
apply(case_tac "unat elf64_ra_offset < unat elf64_ra_offseta"; simp)
apply(simp only: pairCompare.simps genericCompare_def)
apply(case_tac "unat elf64_ra_infoa < unat elf64_ra_info"; simp)
apply auto[1]
apply auto[1]
apply(simp only: pairCompare.simps genericCompare_def)
apply(case_tac "unat elf64_ra_infoa < unat elf64_ra_info"; simp)
apply(case_tac "elf64_ra_info = elf64_ra_infoa"; simp)
apply(case_tac "unat elf64_ra_info < unat elf64_ra_infoa"; simp)
apply auto
done
lemma relocSiteCompare_LT_relocSiteCompare_GT:
assumes "relocSiteCompare x y = LT"
shows "relocSiteCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: relocSiteCompare_def quadrupleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule elf64_relocation_a_compare_LT_elf64_relocation_a_compare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)+
done
lemma relocDecisionCompare_LT_relocDecisionCompare_GT:
assumes "relocDecisionCompare x y = LT"
shows "relocDecisionCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp only: relocDecisionCompare.simps ordering.simps)
apply(rule tripleCompare_LT_tripleCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule symRefCompare_LT_symRefCompare_GT, assumption)
apply(rule relocSiteCompare_LT_relocSiteCompare_GT, assumption)
done
lemma symRefAndRelocSiteCompare_LT_symRefAndRelocSiteCompare_GT:
assumes "symRefAndRelocSiteCompare x y = LT"
shows "symRefAndRelocSiteCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: symRefAndRelocSiteCompare_def pairCompare.simps)
apply(rule tripleCompare_LT_tripleCompare_GT, assumption)
apply(rule symRefCompare_LT_symRefCompare_GT, assumption)
apply(rule maybeCompare_LT_maybeCompare_GT, assumption)
apply(rule relocSiteCompare_LT_relocSiteCompare_GT, assumption)
apply(rule maybeCompare_LT_maybeCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule relocDecisionCompare_LT_relocDecisionCompare_GT, assumption)
apply(rule maybeCompare_LT_maybeCompare_GT, assumption)
apply(rule symDefCompare_LT_symDefCompare_GT, assumption)
done
lemma lexicographicCompareBy_GT_lexicographicCompareBy_LT:
assumes "lexicographicCompareBy cmp xs ys = GT" and "\<And>x y. cmp x y = GT \<Longrightarrow> cmp y x = LT"
shows "lexicographicCompareBy cmp ys xs = LT"
using assms
apply(induction xs arbitrary: ys)
apply(case_tac ys; simp add: lexicographicCompareBy.simps)
apply(case_tac ys; simp add: lexicographicCompareBy.simps)
apply(case_tac "cmp aa a"; simp)
apply(metis ordering.exhaust ordering.simps)
done
lemma lexicographicCompareBy_LT_lexicographicCompareBy_GT:
assumes "lexicographicCompareBy cmp xs ys = LT" and "\<And>x y. cmp x y = LT \<Longrightarrow> cmp y x = GT"
shows "lexicographicCompareBy cmp ys xs = GT"
using assms
apply(induction xs arbitrary: ys)
apply(case_tac ys; simp add: lexicographicCompareBy.simps)
apply(case_tac ys; simp add: lexicographicCompareBy.simps)
apply(case_tac "cmp aa a"; simp)
apply(metis ordering.exhaust ordering.simps)
done
lemma elf64_header_compare_GT_elf64_header_compare_LT:
assumes "elf64_header_compare x y = GT"
shows "elf64_header_compare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_header_compare_def)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
done
lemma compare_elf64_section_header_table_entry_GT_compare_elf64_section_header_table_entry_LT:
assumes "compare_elf64_section_header_table_entry x y = GT"
shows "compare_elf64_section_header_table_entry y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_section_header_table_entry_def)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(simp add: genericCompare_def)
apply(case_tac "xa < ya", auto)
done
lemma compare_elf64_program_header_table_entry_GT_compare_elf64_program_header_table_entry_LT:
assumes "compare_elf64_program_header_table_entry x y = GT"
shows "compare_elf64_program_header_table_entry y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_program_header_table_entry_def)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(simp add: genericCompare_def)
apply(case_tac "xa < ya", auto)
done
lemma compare_byte_GT_compare_byte_LT:
assumes "compare_byte x y = GT"
shows "compare_byte y x = LT"
using assms unfolding compare_byte_def
apply(rule genericCompare_GT_genericCompare_LT)
done
lemma compare_byte_sequence_GT_compare_byte_sequence_LT:
assumes "compare_byte_sequence x y = GT"
shows "compare_byte_sequence y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: compare_byte_sequence_def)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule compare_byte_GT_compare_byte_LT, assumption)
done
lemma compare_elf64_interpreted_section_GT_compare_elf64_interpreted_section_LT:
assumes "compare_elf64_interpreted_section x y = GT"
shows "compare_elf64_interpreted_section y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_section_def)
apply(simp only: tripleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule compare_byte_sequence_GT_compare_byte_sequence_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
done
lemma compare_elf64_interpreted_segment_GT_compare_elf64_interpreted_segment_LT:
assumes "compare_elf64_interpreted_segment x y = GT"
shows "compare_elf64_interpreted_segment y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_segment_def tripleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule compare_byte_sequence_GT_compare_byte_sequence_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
done
lemma elfFileFeatureCompare_GT_elfFileFeatureCompare_LT:
assumes "elfFileFeatureCompare x y = GT"
shows "elfFileFeatureCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: elfFileFeatureCompare.simps)
apply(rule elf64_header_compare_GT_elf64_header_compare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption,
rule compare_elf64_section_header_table_entry_GT_compare_elf64_section_header_table_entry_LT,
assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption,
rule compare_elf64_program_header_table_entry_GT_compare_elf64_program_header_table_entry_LT,
assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)+
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule compare_elf64_interpreted_section_GT_compare_elf64_interpreted_section_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)
apply(rule compare_elf64_interpreted_segment_GT_compare_elf64_interpreted_segment_LT, assumption)
done
lemma elf64_header_compare_LT_elf64_header_compare_GT:
assumes "elf64_header_compare x y = LT"
shows "elf64_header_compare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: elf64_header_compare_def)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
done
lemma compare_elf64_section_header_table_entry_LT_compare_elf64_section_header_table_entry_GT:
assumes "compare_elf64_section_header_table_entry x y = LT"
shows "compare_elf64_section_header_table_entry y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_section_header_table_entry_def)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(simp add: genericCompare_def)
apply(case_tac "xa < ya"; simp)
apply(case_tac "xa = ya"; simp)
done
lemma compare_elf64_program_header_table_entry_LT_compare_elf64_program_header_table_entry_GT:
assumes "compare_elf64_program_header_table_entry x y = LT"
shows "compare_elf64_program_header_table_entry y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_program_header_table_entry_def)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(simp add: genericCompare_def)
apply(case_tac "xa < ya"; simp)
apply(case_tac "xa = ya"; simp)
done
lemma compare_byte_LT_compare_byte_GT:
assumes "compare_byte x y = LT"
shows "compare_byte y x = GT"
using assms unfolding compare_byte_def
apply(rule genericCompare_LT_genericCompare_GT)
done
lemma compare_byte_sequence_LT_compare_byte_sequence_GT:
assumes "compare_byte_sequence x y = LT"
shows "compare_byte_sequence y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: compare_byte_sequence_def)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule compare_byte_LT_compare_byte_GT, assumption)
done
lemma compare_elf64_interpreted_section_LT_compare_elf64_interpreted_section_GT:
assumes "compare_elf64_interpreted_section x y = LT"
shows "compare_elf64_interpreted_section y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_section_def tripleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule compare_byte_sequence_LT_compare_byte_sequence_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
done
lemma compare_elf64_interpreted_segment_LT_compare_elf64_interpreted_segment_GT:
assumes "compare_elf64_interpreted_segment x y = LT"
shows "compare_elf64_interpreted_segment y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_segment_def tripleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule compare_byte_sequence_LT_compare_byte_sequence_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
done
lemma elfFileFeatureCompare_LT_elfFileFeatureCompare_GT:
assumes "elfFileFeatureCompare x y = LT"
shows "elfFileFeatureCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: elfFileFeatureCompare.simps)
apply(rule elf64_header_compare_LT_elf64_header_compare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption,
rule compare_elf64_section_header_table_entry_LT_compare_elf64_section_header_table_entry_GT,
assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption,
rule compare_elf64_program_header_table_entry_LT_compare_elf64_program_header_table_entry_GT,
assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)+
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule compare_elf64_interpreted_section_LT_compare_elf64_interpreted_section_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)
apply(rule compare_elf64_interpreted_segment_LT_compare_elf64_interpreted_segment_GT, assumption)
done
lemma tagCompare_GT_tagCompare_LT:
assumes "tagCompare dict x y = GT" and "\<And>x y. compare_method dict x y = GT \<Longrightarrow> compare_method dict y x = LT"
shows "tagCompare dict y x = LT"
using assms
apply(case_tac x; case_tac y; clarify; subst tagCompare.simps; subst (asm) tagCompare.simps)
apply(metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, rule symDefCompare_GT_symDefCompare_LT, assumption,
metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, rule symRefAndRelocSiteCompare_GT_symRefAndRelocSiteCompare_LT, assumption,
metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, rule elfFileFeatureCompare_GT_elfFileFeatureCompare_LT, assumption,
metis ordering.simps, metis ordering.simps, metis ordering.simps, metis ordering.simps,
metis ordering.simps, metis ordering.simps, meson)
done
lemma tagCompare_LT_tagCompare_GT:
assumes "tagCompare dict x y = LT" and "\<And>x y. compare_method dict x y = LT \<Longrightarrow> compare_method dict y x = GT"
shows "tagCompare dict y x = GT"
using assms
apply(case_tac x; case_tac y; clarify; subst tagCompare.simps; subst (asm) tagCompare.simps)
apply((metis ordering.simps)+, rule symDefCompare_LT_symDefCompare_GT, assumption,
(metis ordering.simps)+, rule symRefAndRelocSiteCompare_LT_symRefAndRelocSiteCompare_GT, assumption,
(metis ordering.simps)+, rule elfFileFeatureCompare_LT_elfFileFeatureCompare_GT, assumption,
(metis ordering.simps)+)
done
lemma stringCompare_method_neq_not_EQ_Cons:
assumes "x \<noteq> y"
shows "stringCompare_method (x#xs) (y#ys) \<noteq> EQ"
using assms
apply auto
apply(auto simp add: stringCompare_method_def Let_def)
apply(case_tac "(nat_of_char x < nat_of_char y \<or> \<not> nat_of_char y < nat_of_char x \<and> ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) xs ys) \<and>
(nat_of_char y < nat_of_char x \<or> \<not> nat_of_char x < nat_of_char y \<and> ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) ys xs)")
apply(simp_all)
apply(erule conjE)
apply(erule disjE)
apply(erule disjE)
apply(metis less_not_sym)
apply(erule conjE, simp)
apply(erule disjE, erule conjE, simp)
apply(erule conjE)+
apply(simp add: inj_eq inj_nat_of_char)
apply(erule disjE)
apply(case_tac "nat_of_char x < nat_of_char y \<or> \<not> nat_of_char y < nat_of_char x \<and> ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) xs ys", simp_all)
apply(case_tac "\<not> nat_of_char y < nat_of_char x \<and> ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) xs ys", simp_all)
apply(case_tac "nat_of_char x < nat_of_char y \<or> ord.lexordp_eq (\<lambda>x y. nat_of_char x < nat_of_char y) xs ys", simp_all)
done
lemma stringCompare_method_neq_not_EQ:
assumes "s \<noteq> t"
shows "stringCompare_method s t \<noteq> EQ"
using assms proof(auto)
fix s t :: string
assume "s \<noteq> t" and "stringCompare_method s t = EQ"
thus False
proof(induction s arbitrary: t)
fix t :: string
assume "[] \<noteq> t" and *: "stringCompare_method [] t = EQ"
from this obtain x xs where "t = x#xs" by (metis list.exhaust)
hence "stringCompare_method [] (x#xs) = EQ" using * by simp
hence "LT = EQ" using stringCompare_method_def by simp
thus False using ordering.simps by simp
next
fix xs t :: string and x :: char
assume IH: "(\<And>t. xs \<noteq> t \<Longrightarrow> stringCompare_method xs t = EQ \<Longrightarrow> False)" and "x#xs \<noteq> t" and *: "stringCompare_method (x # xs) t = EQ"
hence "t = [] \<or> (\<exists>y ys. t = y#ys \<and> (x \<noteq> y \<or> ys \<noteq> xs))" by(metis remove_duplicates.cases)
thus False
proof
assume "t = []"
hence "stringCompare_method (x#xs) [] = EQ" using * by simp
hence "GT = EQ" using stringCompare_method_def by simp
thus False by simp
next
assume "\<exists>y ys. t = y # ys \<and> (x \<noteq> y \<or> ys \<noteq> xs)"
from this obtain y ys where "t = y # ys \<and> (x \<noteq> y \<or> x = y \<and> ys \<noteq> xs)" by blast
hence EQ: "t = y#ys" and C: "(x \<noteq> y \<or> x = y \<and> ys \<noteq> xs)" by simp+
from C show False
proof
assume NEQ: "x \<noteq> y"
hence "stringCompare_method (x#xs) (y#ys) = EQ" using * and EQ by simp
thus False using stringCompare_method_def NEQ stringCompare_method_neq_not_EQ_Cons by simp
next
assume "x = y \<and> ys \<noteq> xs"
hence "x = y" and NEQ: "ys \<noteq> xs" by simp+
hence "stringCompare_method (x#xs) (x#ys) = EQ" using * and EQ by simp
hence "stringCompare_method xs ys = EQ" using stringCompare_method_def by simp
thus False using IH NEQ by metis
qed
qed
qed
qed
corollary stringCompare_method_refl':
shows "stringCompare_method x y = EQ \<longleftrightarrow> x = y"
using stringCompare_method_neq_not_EQ stringCompare_method_refl by auto
lemma elf64_symbol_table_entry_compare_refl':
shows "(elf64_symbol_table_entry_compare x y = EQ) \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: elf64_symbol_table_entry_compare_def sextupleCompare.simps pairCompare.simps)
apply(simp add: genericCompare_def pairCompare.simps)
done
lemma symDefCompare_refl':
shows "symDefCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: symDefCompare_def quintupleCompare.simps pairCompare.simps)
apply(case_tac "stringCompare_method def_symname def_symnamea"; simp; (metis ordering.distinct stringCompare_method_refl')?)
apply(simp add: pairCompare.simps)
apply(case_tac "elf64_symbol_table_entry_compare def_syment def_symenta"; simp; (metis ordering.distinct elf64_symbol_table_entry_compare_refl')?)
apply(simp add: pairCompare.simps genericCompare_def)
apply(metis elf64_symbol_table_entry_compare_refl' stringCompare_method_refl')
done
corollary symDefCompare_tri:
shows "symDefCompare x y = LT \<or> symDefCompare x y = GT \<or> x = y"
apply(case_tac "symDefCompare x y"; simp add: symDefCompare_refl')
done
lemma symRefCompare_refl':
shows "symRefCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: symRefCompare_def quadrupleCompare.simps pairCompare.simps)
apply(case_tac "stringCompare_method ref_symname ref_symnamea"; simp; (metis ordering.distinct stringCompare_method_refl')?)
apply(simp add: pairCompare.simps)
apply(case_tac "elf64_symbol_table_entry_compare ref_syment ref_symenta"; simp; (metis ordering.distinct elf64_symbol_table_entry_compare_refl')?)
apply(simp add: pairCompare.simps genericCompare_def)
apply(metis elf64_symbol_table_entry_compare_refl' stringCompare_method_refl')
done
lemma elf64_relocation_a_compare_refl':
shows "elf64_relocation_a_compare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: elf64_relocation_a_compare_def tripleCompare.simps pairCompare.simps genericCompare_def)
done
lemma relocSiteCompare_refl':
shows "relocSiteCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: relocSiteCompare_def quadrupleCompare.simps pairCompare.simps)
apply(case_tac "elf64_relocation_a_compare ref_relent ref_relenta"; simp; (metis ordering.distinct elf64_relocation_a_compare_refl')?)
apply(simp add: genericCompare_def pairCompare.simps)
apply(metis elf64_relocation_a_compare_refl')
done
lemma pairCompare_refl':
assumes "\<And>x y. cmp1 x y = EQ \<longleftrightarrow> x = y" and "\<And>x y. cmp2 x y = EQ \<longleftrightarrow> x = y"
shows "pairCompare cmp1 cmp2 x y = EQ \<longleftrightarrow> x = y"
using assms
apply(case_tac x; case_tac y; simp add: pairCompare.simps)
apply(smt ordering.exhaust ordering.simps(7) ordering.simps(8) ordering.simps(9))
done
lemma maybeCompare_refl':
assumes "\<And>x y. cmp x y = EQ \<longleftrightarrow> x = y"
shows "maybeCompare cmp x y = EQ \<longleftrightarrow> x = y"
using assms
apply auto
apply(case_tac x; case_tac y; simp add: maybeCompare.simps)
apply(case_tac x; case_tac y; simp add: maybeCompare.simps)
done
lemma relocDecisionCompare_refl':
shows "relocDecisionCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp)
apply(case_tac x3; case_tac x3a; simp)
apply(simp only: tripleCompare.simps)
apply(subst pairCompare_refl')
apply(simp add: genericCompare_def)
apply(subst pairCompare_refl')
apply(simp add: symRefCompare_refl')
apply(simp add: relocSiteCompare_refl')
apply simp+
done
lemma symRefAndRelocSiteCompare_refl':
shows "symRefAndRelocSiteCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: symRefAndRelocSiteCompare_def tripleCompare.simps pairCompare.simps)
apply(case_tac "symRefCompare ref refa"; simp; (metis ordering.distinct symRefCompare_refl')?)
apply(simp add: pairCompare.simps)
apply(case_tac "maybeCompare relocSiteCompare maybe_reloc maybe_reloca"; simp)
apply(metis ordering.distinct relocSiteCompare_refl' maybeCompare_refl')
apply(smt pairCompare_refl' maybeCompare_refl' symDefCompare_refl' relocDecisionCompare_refl' relocSiteCompare_refl' symRefCompare_refl')
apply(metis ordering.distinct maybeCompare_refl' relocSiteCompare_refl')
done
lemma symRefAndRelocSiteCompare_tri:
shows "symRefAndRelocSiteCompare x y = LT \<or> symRefAndRelocSiteCompare x y = GT \<or> x = y"
apply(case_tac "symRefAndRelocSiteCompare x y"; simp add: symRefAndRelocSiteCompare_refl')
done
lemma lexicographicCompareBy_refl':
assumes "\<And>x y. cmp x y = EQ \<longleftrightarrow> x = y"
shows "lexicographicCompareBy cmp x y = EQ \<longleftrightarrow> x = y"
using assms
apply(induction x arbitrary: y)
apply(case_tac y; simp add: lexicographicCompareBy.simps)
apply(case_tac y; simp add: lexicographicCompareBy.simps)
apply(case_tac "cmp a aa")
apply clarify
apply(subst ordering.case_cong_weak[where ordering'=LT], assumption)
apply(metis ordering.distinct ordering.simps)
apply(subst ordering.case_cong_weak[where ordering'=EQ], assumption)
apply simp
apply(subst ordering.case_cong_weak[where ordering'=GT], assumption)
apply(simp only: ordering.case)
apply(metis ordering.distinct ordering.simps)
done
lemma tripleCompare_refl':
assumes "\<And>x y. cmp1 x y = EQ \<longleftrightarrow> x = y"
and "\<And>x y. cmp2 x y = EQ \<longleftrightarrow> x = y"
and "\<And>x y. cmp3 x y = EQ \<longleftrightarrow> x = y"
shows "tripleCompare cmp1 cmp2 cmp3 x y = EQ \<longleftrightarrow> x = y"
using assms
apply(case_tac x; case_tac y; simp add: tripleCompare.simps pairCompare.simps)
apply(case_tac "cmp1 a aa"; simp)
apply(metis ordering.distinct)
apply(case_tac "cmp1 aa aa")
apply(subst ordering.case_cong_weak[where ordering'=LT], assumption, simp)
apply(metis ordering.distinct)
apply(subst ordering.case_cong_weak[where ordering'=EQ], assumption, simp)
apply(simp add: pairCompare_refl')
apply(subst ordering.case_cong_weak[where ordering'=GT], assumption, simp)
apply(metis ordering.distinct)
apply(metis ordering.distinct)
done
lemma elf64_header_compare_refl':
shows "(elf64_header_compare x y = EQ) = (x = y)"
apply(case_tac x; case_tac y; simp add: elf64_header_compare_def pairCompare.simps lexicographicCompareBy.simps genericCompare_def)
apply(case_tac "lexicographicCompareBy (genericCompare op < op =) (map unat elf64_ident) (map unat elf64_identa)"; simp)
apply(metis genericCompare_refl lexicographicCompareBy_refl' genericCompare_def ordering.distinct)
apply(subst (asm) lexicographicCompareBy_refl', simp add: genericCompare_def)
apply(subst lexicographicCompareBy_refl', simp add: genericCompare_def)
apply(simp only: list.inject)
apply auto
apply(rule list.inj_map_strong[where f="unat" and fa="unat"], simp, simp)
apply(metis genericCompare_refl lexicographicCompareBy_refl' genericCompare_def ordering.distinct)
done
lemma compare_elf64_section_header_table_entry_refl':
shows "compare_elf64_section_header_table_entry x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: compare_elf64_section_header_table_entry_def)
apply(subst lexicographicCompareBy_refl', simp add: genericCompare_def)
apply auto
done
lemma compare_elf64_program_header_table_entry_refl':
shows "compare_elf64_program_header_table_entry x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: compare_elf64_program_header_table_entry_def)
apply(subst lexicographicCompareBy_refl', simp add: genericCompare_def)
apply auto
done
lemma compare_byte_refl':
shows "compare_byte b1 b2 = EQ \<longleftrightarrow> b1 = b2"
unfolding compare_byte_def
apply(simp add: genericCompare_def)
done
lemma byte_list_of_byte_sequence_refl':
shows "byte_list_of_byte_sequence ss = byte_list_of_byte_sequence ts \<longleftrightarrow> ss = ts"
apply(case_tac ss; case_tac ts; clarify)
apply(simp add: byte_list_of_byte_sequence.simps)
done
lemma compare_byte_sequence_refl':
shows "compare_byte_sequence bs1 bs2 = EQ \<longleftrightarrow> bs1 = bs2"
unfolding compare_byte_sequence_def
apply(subst lexicographicCompareBy_refl', simp add: compare_byte_refl')
apply(simp add: byte_list_of_byte_sequence_refl')
done
lemma compare_elf64_interpreted_section_refl':
shows "compare_elf64_interpreted_section x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_section_def)
apply(simp only: tripleCompare.simps)
apply(subst pairCompare_refl')
apply(subst lexicographicCompareBy_refl')
apply(simp add: genericCompare_def, rule refl)
apply(subst pairCompare_refl')
apply(subst compare_byte_sequence_refl', simp)
apply(subst stringCompare_method_refl')
apply simp_all
done
lemma natural_of_bool_refl':
shows "natural_of_bool b1 = natural_of_bool b2 \<longleftrightarrow> b1 = b2"
apply(case_tac b1; case_tac b2; simp add: natural_of_bool.simps)
done
lemma compare_elf64_interpreted_segment_refl':
shows "compare_elf64_interpreted_segment x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: compare_elf64_interpreted_segment_def tripleCompare.simps pairCompare.simps)
apply(case_tac "compare_byte_sequence elf64_segment_body elf64_segment_bodya", simp)
apply(metis ordering.distinct compare_byte_sequence_refl')
apply simp
apply(case_tac "(pairCompare (lexicographicCompareBy (genericCompare op < op =)) (lexicographicCompareBy (genericCompare op < op =))
([elf64_segment_type, elf64_segment_size, elf64_segment_memsz, elf64_segment_base, elf64_segment_paddr, elf64_segment_align, elf64_segment_offset],
case elf64_segment_flags of (f1, f2, f3) \<Rightarrow> [natural_of_bool f1, natural_of_bool f2, natural_of_bool f3])
([elf64_segment_typea, elf64_segment_sizea, elf64_segment_memsza, elf64_segment_basea, elf64_segment_paddra, elf64_segment_aligna, elf64_segment_offseta],
case elf64_segment_flagsa of (f1, f2, f3) \<Rightarrow> [natural_of_bool f1, natural_of_bool f2, natural_of_bool f3]) =
EQ)")
apply(subst (asm) pairCompare_refl', simp add: lexicographicCompareBy_refl' genericCompare_refl)
apply(case_tac elf64_segment_flags; case_tac elf64_segment_flagsa; simp)
apply(subst (asm) compare_byte_sequence_refl')
apply(subst (asm) natural_of_bool_refl')+
apply(subst pairCompare_refl', simp add: lexicographicCompareBy_refl' genericCompare_refl, simp)
apply(smt pairCompare_refl' lexicographicCompareBy_refl' genericCompare_refl ordering.distinct)
apply(metis ordering.simps ordering.distinct compare_byte_sequence_refl')
done
lemma elfFileFeatureCompare_refl':
shows "elfFileFeatureCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: elfFileFeatureCompare.simps)
apply(simp add: elf64_header_compare_refl')
apply(simp add: lexicographicCompareBy_refl' compare_elf64_section_header_table_entry_refl')
apply(simp add: lexicographicCompareBy_refl' compare_elf64_program_header_table_entry_refl')
apply(rule pairCompare_refl', rule genericCompare_refl, rule compare_elf64_interpreted_section_refl')
apply(rule pairCompare_refl', rule genericCompare_refl, rule compare_elf64_interpreted_segment_refl')
done
corollary elfFileFeatureCompare_tri:
shows "elfFileFeatureCompare x y = LT \<or> elfFileFeatureCompare x y = GT \<or> x = y"
apply(case_tac "elfFileFeatureCompare x y"; simp add: elfFileFeatureCompare_refl')
done
lemma tup2_dict_preserves_well_behavedness:
fixes dict1 :: "'a Ord_class" and dict2 :: "'b Ord_class"
assumes "well_behaved_lem_ordering (isLess_method dict1) (isLessEqual_method dict1) (isGreater_method dict1)
(compare_method dict1)" and
"well_behaved_lem_ordering (isLess_method dict2) (isLessEqual_method dict2) (isGreater_method dict2)
(compare_method dict2)"
shows "well_behaved_lem_ordering (isLess_method (instance_Basic_classes_Ord_tup2_dict dict1 dict2))
(isLessEqual_method (instance_Basic_classes_Ord_tup2_dict dict1 dict2))
(isGreater_method (instance_Basic_classes_Ord_tup2_dict dict1 dict2))
(compare_method (instance_Basic_classes_Ord_tup2_dict dict1 dict2))"
using assms unfolding instance_Basic_classes_Ord_tup2_dict_def
apply(simp only: Ord_class.simps well_behaved_lem_ordering.simps)
apply(erule conjE)+
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(unfold pairGreater_def[where dict_Basic_classes_Ord_a="dict1"], assumption)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(rule conjI, (subst (asm) pairLess.simps)+, blast, metis pairLess.simps)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(subst (asm) pairLess.simps, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(subst (asm) pairLess.simps, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply((subst (asm) pairLess.simps)+, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply((subst (asm) pairLess.simps)+, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply((subst (asm) pairLess.simps)+, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply((subst (asm) pairLess.simps)+, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(rule conjI, subst (asm) pairLessEq.simps, subst (asm) pairLess.simps, meson)
apply(subst (asm) pairLessEq.simps, subst (asm) pairLess.simps, meson)
apply(rule conjI, (rule allI)+, case_tac x, case_tac y, clarify)
apply(subst pairLessEq.simps, meson)
apply(rule conjI)
apply((rule allI)+, case_tac x, case_tac y, clarify)
apply(subst pairLessEq.simps, subst (asm) pairLess.simps, meson)
apply(rule conjI)
apply((rule allI)+, case_tac x, case_tac y, clarify)
apply(subst pairCompare.simps, subst (asm) pairCompare.simps)
apply(case_tac "compare_method dict1 ab aaa", subst (asm) ordering.case_cong_weak[where ordering'=LT])
apply blast
apply(metis ordering.simps(9))
apply(subst (asm) ordering.case_cong_weak[where ordering'=EQ])
apply blast
apply(metis (no_types, hide_lams) ordering.exhaust ordering.simps(8))
apply(subst (asm) ordering.case_cong_weak[where ordering'=GT], assumption)
apply(metis ordering.simps(9))
apply(rule conjI)
apply((rule allI)+, case_tac x, case_tac y, clarify)
apply(subst pairCompare.simps, subst (asm) pairCompare.simps)
apply(case_tac "compare_method dict1 ab aaa", subst (asm) ordering.case_cong_weak[where ordering'=LT])
apply blast
apply(metis ordering.simps(7))
apply(subst (asm) ordering.case_cong_weak[where ordering'=EQ])
apply blast
apply(metis (no_types, hide_lams) ordering.exhaust ordering.simps(8))
apply(subst (asm) ordering.case_cong_weak[where ordering'=GT], assumption)
apply(metis ordering.simps(7))
apply(rule allI)
apply(case_tac x, clarify)
apply(subst pairCompare.simps)
apply(smt Pair_inject ordering.exhaust ordering.simps)
done
lemma element_range_compare_GT_element_range_compare_LT:
assumes "element_range_compare x y = GT"
shows "element_range_compare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: element_range_compare_def)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule genericCompare_GT_genericCompare_LT, assumption)+
done
lemma element_range_compare_LT_element_range_compare_GT:
assumes "element_range_compare x y = LT"
shows "element_range_compare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: element_range_compare_def)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule genericCompare_LT_genericCompare_GT, assumption)+
done
lemma plt_entry_content_fn_compare_GT_plt_entry_content_fn_compare_LT:
assumes "plt_entry_content_fn_compare f g = GT"
shows "plt_entry_content_fn_compare g f = LT"
using assms
sorry
lemma plt_entry_content_fn_compare_LT_plt_entry_content_fn_compare_GT:
assumes "plt_entry_content_fn_compare f g = LT"
shows "plt_entry_content_fn_compare g f = GT"
using assms
sorry
lemma abiFeatureCompare0_GT_abiFeatureCompare0_LT:
assumes "abiFeatureCompare0 x y = GT"
shows "abiFeatureCompare0 y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: abiFeatureCompare0.simps)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
apply(rule maybeCompare_GT_maybeCompare_LT, assumption)
apply(rule symDefCompare_GT_symDefCompare_LT, assumption)
apply(rule lexicographicCompareBy_GT_lexicographicCompareBy_LT, assumption)
apply(case_tac xa; case_tac ya; simp add: tripleCompare.simps)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule stringCompare_method_GT_stringCompare_method_LT, assumption)
apply(rule pairCompare_GT_pairCompare_LT, assumption)
apply(rule maybeCompare_GT_maybeCompare_LT, assumption)
apply(rule symDefCompare_GT_symDefCompare_LT, assumption)
apply(rule plt_entry_content_fn_compare_GT_plt_entry_content_fn_compare_LT, assumption)
done
lemma abiFeatureCompare0_LT_abiFeatureCompare0_GT:
assumes "abiFeatureCompare0 x y = LT"
shows "abiFeatureCompare0 y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: abiFeatureCompare0.simps)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
apply(rule maybeCompare_LT_maybeCompare_GT, assumption)
apply(rule symDefCompare_LT_symDefCompare_GT, assumption)
apply(rule lexicographicCompareBy_LT_lexicographicCompareBy_GT, assumption)
apply(case_tac xa; case_tac ya; simp add: tripleCompare.simps)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule stringCompare_method_LT_stringCompare_method_GT, assumption)
apply(rule pairCompare_LT_pairCompare_GT, assumption)
apply(rule maybeCompare_LT_maybeCompare_GT, assumption)
apply(rule symDefCompare_LT_symDefCompare_GT, assumption)
apply(rule plt_entry_content_fn_compare_LT_plt_entry_content_fn_compare_GT, assumption)
done
lemma abiFeatureCompare_GT_abiFeatureCompare_LT:
assumes "abiFeatureCompare x y = GT"
shows "abiFeatureCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: abiFeatureCompare.simps)
done
lemma abiFeatureCompare_LT_abiFeatureCompare_GT:
assumes "abiFeatureCompare x y = LT"
shows "abiFeatureCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: abiFeatureCompare.simps)
done
lemma anyAbiFeatureCompare_GT_anyAbiFeatureCompare_LT:
assumes "anyAbiFeatureCompare x y = GT"
shows "anyAbiFeatureCompare y x = LT"
using assms
apply(case_tac x; case_tac y; simp add: anyAbiFeatureCompare.simps)
apply(rule abiFeatureCompare0_GT_abiFeatureCompare0_LT, assumption)
apply(rule abiFeatureCompare_GT_abiFeatureCompare_LT, assumption)
done
lemma anyAbiFeatureCompare_LT_anyAbiFeatureCompare_GT:
assumes "anyAbiFeatureCompare x y = LT"
shows "anyAbiFeatureCompare y x = GT"
using assms
apply(case_tac x; case_tac y; simp add: anyAbiFeatureCompare.simps)
apply(rule abiFeatureCompare0_LT_abiFeatureCompare0_GT, assumption)
apply(rule abiFeatureCompare_LT_abiFeatureCompare_GT, assumption)
done
lemma abiFeatureCompare_refl':
shows "abiFeatureCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: abiFeatureCompare.simps)
done
lemma element_range_compare_refl':
shows "element_range_compare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: element_range_compare_def)
apply(subst pairCompare_refl')
apply(rule stringCompare_method_refl')
apply(rule pairCompare_refl')
apply(simp add: genericCompare_def)+
done
lemma plt_entry_content_fn_compare_refl':
shows "plt_entry_content_fn_compare f g = EQ \<longleftrightarrow> f = g"
unfolding plt_entry_content_fn_compare_def
apply(case_tac "\<forall>n1 n2. pairCompare (genericCompare op < op =) (lexicographicCompareBy (genericCompare op < op =)) (f n1 n2) (g n1 n2) = EQ"; simp)
apply(subst (asm) pairCompare_refl')
apply(simp add: genericCompare_def)
apply(rule lexicographicCompareBy_refl')
apply(simp add: genericCompare_def)
apply(rule ext, rule ext, simp)
apply(rule conjI)
apply(rule impI)
apply(rule conjI)
apply(rule impI)
apply simp
apply auto
apply(simp add: pairCompare_refl' genericCompare_def lexicographicCompareBy_refl')+
done
lemma abiFeatureCompare0_refl':
shows "abiFeatureCompare0 x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: abiFeatureCompare0.simps)
apply(rule lexicographicCompareBy_refl')
apply(rule pairCompare_refl')
apply(rule stringCompare_method_refl')
apply(rule maybeCompare_refl')
apply(rule symDefCompare_refl')
apply(rule lexicographicCompareBy_refl')
apply(case_tac "xa"; case_tac "ya"; simp)
apply(simp only: tripleCompare.simps)
apply(subst pairCompare_refl')
apply(rule stringCompare_method_refl')
apply(rule pairCompare_refl')
apply(rule maybeCompare_refl')
apply(rule symDefCompare_refl')
apply(rule plt_entry_content_fn_compare_refl')
apply simp
done
lemma anyAbiFeatureCompare_refl':
shows "anyAbiFeatureCompare x y = EQ \<longleftrightarrow> x = y"
apply(case_tac x; case_tac y; simp add: anyAbiFeatureCompare.simps)
apply(simp add: abiFeatureCompare0_refl')
apply(simp add: abiFeatureCompare_refl')
done
lemma anyAbiFeatureCompare_tri:
shows "anyAbiFeatureCompare x y = GT \<or> anyAbiFeatureCompare x y = LT \<or> x = y"
apply(case_tac "anyAbiFeatureCompare x y")
apply(metis ordering.distinct anyAbiFeatureCompare_refl')+
done
lemma any_abi_feature_dict_well_behaved:
shows "well_behaved_lem_ordering (isLess_method instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(isLessEqual_method instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(isGreater_method instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(compare_method instance_Basic_classes_Ord_Abis_any_abi_feature_dict)"
unfolding instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def well_behaved_lem_ordering.simps
apply(simp only: Ord_class.simps)
apply(rule conjI)
apply((rule allI)+, rule impI, rule anyAbiFeatureCompare_GT_anyAbiFeatureCompare_LT, assumption)
apply(rule conjI)
apply((rule allI)+, rule impI, rule anyAbiFeatureCompare_LT_anyAbiFeatureCompare_GT, assumption)
apply(rule conjI)
apply((rule allI)+, simp add: anyAbiFeatureCompare_tri)
apply(rule conjI)
apply((rule allI)+, clarify, metis ordering.distinct anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, clarify, metis ordering.distinct anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, simp)
apply(rule conjI)
apply((rule allI)+, simp)
apply(rule conjI)
apply((rule allI)+, metis ordering.distinct anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, metis ordering.distinct anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, simp add: anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, simp add: anyAbiFeatureCompare_refl')
apply(rule conjI)
apply((rule allI)+, simp)
apply(rule conjI)
apply((rule allI)+, simp add: anyAbiFeatureCompare_LT_anyAbiFeatureCompare_GT)
apply(rule conjI)
apply((rule allI)+, simp add: anyAbiFeatureCompare_GT_anyAbiFeatureCompare_LT)
apply((rule allI)+, simp add: anyAbiFeatureCompare_refl')
done
lemma string_dict_well_behaved:
shows "well_behaved_lem_ordering (isLess_method instance_Basic_classes_Ord_string_dict)
(isLessEqual_method instance_Basic_classes_Ord_string_dict)
(isGreater_method instance_Basic_classes_Ord_string_dict)
(compare_method instance_Basic_classes_Ord_string_dict)"
unfolding well_behaved_lem_ordering.simps instance_Basic_classes_Ord_string_dict_def
apply(simp only: Ord_class.simps)
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify; simp only: stringGreater_def)
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify; simp only: stringGreater_def)
apply(rule conjI)
apply((rule allI)+, simp add: stringCompare_tri)
apply(rule conjI)
apply((rule allI)+, clarify, simp add: stringCompare_method_refl stringLess_def)
apply(rule conjI)
apply((rule allI)+, clarify, simp add: stringCompare_method_refl stringGreater_def stringLess_def)
apply(rule conjI)
apply((rule allI)+, simp add: stringLess_stringGreater)
apply(rule conjI)
apply((rule allI)+, meson stringLess_stringGreater)
apply(rule conjI)
apply((rule allI)+, meson stringGreater_def stringLess_stringGreater)
apply(rule conjI)
apply((rule allI)+, meson stringGreater_def stringLess_stringGreater)
apply(rule conjI)
apply((rule allI)+, smt ordering.distinct(5) stringCompare_method_def stringCompare_tri stringGreater_def stringLessEq_def stringLess_def)
apply(rule conjI)
apply((rule allI)+, simp add: stringCompare_method_refl stringLessEq_def)
apply(rule conjI)
apply((rule allI)+, simp add: stringLessEq_def stringLess_def)
apply(rule conjI)
apply((rule allI)+, simp add: stringCompare_method_def)
apply(smt ordering.distinct)
apply(rule conjI)
apply((rule allI)+, simp add: stringCompare_method_def)
apply(smt ordering.distinct stringCompare_method_def stringCompare_method_refl stringCompare_tri stringGreater_def stringLess_def)
apply(rule allI)
apply(smt ordering.distinct stringCompare_method_def stringCompare_method_refl stringCompare_tri stringGreater_def stringLess_def)
done
lemma tagCompare_refl':
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
shows "tagCompare dict t1 t2 = EQ \<longleftrightarrow> t1 = t2"
using assms
apply(case_tac t1; case_tac t2; simp add: tagCompare.simps)
apply(simp add: symDefCompare_refl')
apply(simp add: symRefAndRelocSiteCompare_refl')
apply(simp add: elfFileFeatureCompare_refl')
apply(subst (asm) well_behaved_lem_ordering.simps)
apply meson
done
lemma natural_dict_well_behaved:
shows "well_behaved_lem_ordering (isLess_method instance_Basic_classes_Ord_Num_natural_dict)
(isLessEqual_method instance_Basic_classes_Ord_Num_natural_dict)
(isGreater_method instance_Basic_classes_Ord_Num_natural_dict)
(compare_method instance_Basic_classes_Ord_Num_natural_dict)"
unfolding well_behaved_lem_ordering.simps instance_Basic_classes_Ord_Num_natural_dict_def
apply(simp only: Ord_class.simps)
apply(auto)
apply(auto simp add: genericCompare_def)
apply(meson neqE ordering.distinct)+
done
lemma tag_dict_preserves_well_behavedness:
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict) (compare_method dict)"
shows "well_behaved_lem_ordering (isLess_method (instance_Basic_classes_Ord_Memory_image_range_tag_dict dict))
(isLessEqual_method (instance_Basic_classes_Ord_Memory_image_range_tag_dict dict))
(isGreater_method (instance_Basic_classes_Ord_Memory_image_range_tag_dict dict))
(compare_method (instance_Basic_classes_Ord_Memory_image_range_tag_dict dict))"
using assms unfolding well_behaved_lem_ordering.simps instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
apply(simp only: Ord_class.simps)
apply(rule conjI, (rule allI)+, rule impI, rule tagCompare_GT_tagCompare_LT, blast, blast)
apply(rule conjI, (rule allI)+, rule impI, rule tagCompare_LT_tagCompare_GT, blast, blast)
apply(rule conjI, (rule allI)+)
apply(case_tac x; case_tac y; clarify; (subst tagCompare.simps)?; (subst (asm) tagCompare.simps)?, (subst (asm) tagCompare.simps)?)
apply((metis)+, metis symDefCompare_tri, (metis)+, metis symRefAndRelocSiteCompare_tri, (metis)+,
metis elfFileFeatureCompare_tri, (metis)+, metis ordering.exhaust)
apply(rule conjI, (rule allI)+)
apply(case_tac x; case_tac y; clarify; (subst (asm) tagCompare.simps)?)
apply(metis ordering.simps, metis ordering.simps, metis ordering.simps symDefCompare_refl',
metis ordering.simps symRefAndRelocSiteCompare_refl', metis ordering.simps elfFileFeatureCompare_refl',
metis ordering.distinct)
apply(rule conjI, (rule allI)+)
apply(case_tac x; case_tac y; clarify; (subst (asm) tagCompare.simps)?)
apply(metis ordering.simps, metis ordering.simps, metis ordering.simps symDefCompare_refl',
metis ordering.simps symRefAndRelocSiteCompare_refl', metis ordering.simps elfFileFeatureCompare_refl',
metis ordering.distinct)
apply(rule conjI, (rule allI)+, rule impI)
apply simp
apply(rule conjI, (rule allI)+, rule impI)
apply simp
apply(rule conjI, (rule allI)+, rule impI)
apply(metis ordering.distinct tagCompare_refl)
apply(rule conjI, (rule allI)+, rule impI)
apply(metis ordering.distinct tagCompare_refl)
apply(rule conjI, (rule allI)+, rule impI)
apply simp
apply(erule disjE, simp)
apply(case_tac x; case_tac y; clarify; (subst (asm) tagCompare.simps)?, (subst (asm) tagCompare.simps)?)
apply((metis)+)
apply(metis symDefCompare_refl')
apply(meson ordering.simps)+
apply(metis symRefAndRelocSiteCompare_refl')
apply(meson ordering.simps)+
apply(metis elfFileFeatureCompare_refl')
apply(meson ordering.simps)+
apply(subst tagCompare_refl)
apply meson
apply fast[1]
apply fast[1]
apply(drule tagCompare_LT_tagCompare_GT)
apply meson
apply assumption
apply(drule tagCompare_GT_tagCompare_LT)
apply meson
apply assumption
apply(metis tagCompare_refl' assms)+
done
lemma maybe_dict_preserves_well_behavedness:
fixes dict :: "'a Ord_class"
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict) (compare_method dict)"
shows "well_behaved_lem_ordering (isLess_method (instance_Basic_classes_Ord_Maybe_maybe_dict dict))
(isLessEqual_method (instance_Basic_classes_Ord_Maybe_maybe_dict dict))
(isGreater_method (instance_Basic_classes_Ord_Maybe_maybe_dict dict))
(compare_method (instance_Basic_classes_Ord_Maybe_maybe_dict dict))"
using assms unfolding well_behaved_lem_ordering.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def
apply simp
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify; (subst (asm) maybeCompare.simps);
subst maybeCompare.simps; metis)
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify; (subst (asm) maybeCompare.simps);
subst maybeCompare.simps; metis)
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify; (subst (asm) maybeCompare.simps))
apply(subst maybeCompare.simps, rule refl)
apply(metis)
apply(subst (asm) maybeCompare.simps)
apply(meson orderingIsLess.cases)
apply(rule conjI)
apply(rule allI, case_tac x; clarify)
apply(subst (asm) maybeCompare.simps, metis ordering.simps)+
apply(rule conjI)
apply(rule allI, case_tac x; clarify)
apply(subst (asm) maybeCompare.simps, metis ordering.simps)+
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply(subst (asm) maybeCompare.simps, metis ordering.simps)+
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply(subst (asm) maybeCompare.simps, metis ordering.simps)+
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply((subst (asm) maybeCompare.simps)+, metis ordering.simps)+
apply(rule conjI)
apply(rule allI, case_tac x; clarify)
apply(subst maybeCompare.simps, metis)+
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply(subst (asm) maybeCompare.simps, subst maybeCompare.simps, metis ordering.simps)+
apply(rule conjI)
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply(subst (asm) maybeCompare.simps, subst maybeCompare.simps, metis ordering.simps)+
apply((rule allI)+, case_tac x; case_tac y; clarify)
apply(subst maybeCompare.simps, metis ordering.simps)
apply(subst maybeCompare.simps, fast)
apply(subst maybeCompare.simps, fast)
apply(subst maybeCompare.simps, subst option.inject)
apply meson
done
lemma split_greater_2:
fixes dict :: "'a Ord_class" and element other :: "'a"
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
and "isGreater_method dict element other"
shows "Lem_set.split dict element {element, other} = ({other}, {})"
using assms unfolding well_behaved_lem_ordering.simps proof -
have "isGreater_method dict element other"
using assms by auto
hence "\<not> isLess_method dict element other" and "\<not> isGreater_method dict element element" and "\<not> isLess_method dict element element"
using assms well_behaved_lem_ordering.simps by smt+
hence "{x \<in> {element, other}. isGreater_method dict element x} = {other}" and "{x \<in> {element, other}. isLess_method dict element x} = {}"
using CollectI assms `\<not> isLess_method dict element element` `\<not> isLess_method dict element other` by auto
thus "split dict element {element, other} = ({other}, {})"
using split_def by (metis (full_types))
qed
lemma split_less_2:
fixes dict :: "'a Ord_class" and element other :: "'a"
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
and "isLess_method dict element other"
shows "Lem_set.split dict element {other, element} = ({}, {other})"
using assms unfolding well_behaved_lem_ordering.simps proof -
have "isLess_method dict element other"
using assms by auto
hence "\<not> isGreater_method dict element other" and "\<not> isLess_method dict element element" and "\<not> isGreater_method dict element element"
using assms well_behaved_lem_ordering.simps by smt+
hence "{x \<in> {element, other}. isGreater_method dict element x} = {}" and "{x \<in> {element, other}. isLess_method dict element x} = {other}"
using CollectI assms by auto
thus "split dict element {other, element} = ({}, {other})"
using split_def by (metis (full_types) insert_commute)
qed
lemma split_singleton_same:
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
shows "split dict s {s} = ({}, {})"
using assms
apply(simp only: split_def)
apply simp
apply(rule conjI)
apply(meson lem_ordering_not_gt)
apply(meson lem_ordering_not_lt)
done
lemma split_singleton_diff:
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
and "isLess_method dict s t"
shows "split dict s {t} = ({}, {t})"
using assms
apply(simp only: split_def)
apply simp
apply(rule conjI)
apply(meson lem_ordering_gt lem_ordering_not_lt)
apply auto
done
lemma split_empty:
shows "split dict s {} = ({}, {})"
apply(simp only: split_def)
apply simp
done
lemma list_of_set_empty:
shows "list_of_set {} = []"
by (meson finite.emptyI list_of_set(1) set_empty)
lemma list_of_set_singleton:
shows "list_of_set {x} = [x]"
apply(simp only: list_of_set_def list_of_set_set_def set_choose_def)
apply(rule Hilbert_Choice.some_equality)
apply simp
apply(drule CollectD, erule conjE)
apply(metis distinct.simps(2) ex_in_conv insert_iff list.exhaust list.simps(15) set_empty)
done
lemma chooseAndSplit_singleton:
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
shows "chooseAndSplit dict { s } = Some ({}, s, {})"
using assms
apply(simp only: chooseAndSplit_def)
apply(auto simp add: split_singleton_same)
done
lemma chooseAndSplit_empty:
shows "chooseAndSplit dict {} = None"
apply(simp only: chooseAndSplit_def)
apply simp
done
lemma chooseAndSplit_less_2:
fixes dict :: "'a Ord_class" and element1 element2 :: "'a"
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict)
(compare_method dict)"
and "isLess_method dict element1 element2"
shows "chooseAndSplit dict {element1, element2} = Some ({}, element1, {element2}) \<or>
chooseAndSplit dict {element1, element2} = Some ({element1}, element2, {})"
using assms
apply(simp only: chooseAndSplit_def)
apply(subst if_weak_cong[where b="{element1, element2} = {}" and c="False"], simp_all)
apply(rule disjE[OF set_choose_dichotomy[where x="element1" and y="element2"]])
apply(erule subst[OF sym])
apply(simp only: Let_def)
apply(drule split_less_2, assumption)
apply(subst prod.case_cong_weak[where prod="split dict element1 {element1, element2}" and prod'="({}, {element2})"], simp add: insert_commute)
apply simp
apply(erule subst[OF sym])
apply(simp only: Let_def)
apply(frule lem_ordering_lt, assumption)
apply(drule split_greater_2, assumption)
apply(subst prod.case_cong_weak[where prod="split dict element2 {element1, element2}" and prod'="({element1}, {})"], auto simp add: insert_commute)
done
lemma chooseAndSplit_greater_2:
fixes dict :: "'a Ord_class" and element1 element2 :: "'a"
assumes "well_behaved_lem_ordering (isLess_method dict) (isLessEqual_method dict) (isGreater_method dict) (compare_method dict)"
and "isGreater_method dict element1 element2"
shows "chooseAndSplit dict {element1, element2} = Some ({element2}, element1, {}) \<or>
chooseAndSplit dict {element1, element2} = Some ({}, element2, {element1})"
using assms
apply(simp only: chooseAndSplit_def)
apply(subst if_weak_cong[where b="{element1, element2} = {}" and c="False"], simp_all)
apply(rule disjE[OF set_choose_dichotomy[where x="element1" and y="element2"]])
apply(erule subst[OF sym])
apply(simp only: Let_def)
apply(drule split_greater_2, assumption)
apply(subst prod.case_cong_weak[where prod="split dict element1 {element1, element2}" and prod'="({element2}, {})"], simp add: insert_commute)
apply simp
apply(erule subst[OF sym])
apply(simp only: Let_def)
apply(frule lem_ordering_gt, assumption)
apply(drule split_less_2, assumption)
apply(subst prod.case_cong_weak[where prod="split dict element2 {element1, element2}" and prod'="({}, {element1})"], auto simp add: insert_commute)
done
text {* In library somewhere? Doesn't appear to be so, though find_theorems is so temprimental I
can't really be sure... *}
lemma map_eqI:
assumes "\<forall>d \<in> dom m1 \<union> dom m2. m1 d = m2 d"
shows "m1 = m2"
using assms by fastforce
text {* Induction principle for reasoning about list functions that have a special case for
singleton lists. *}
lemma empty_singleton_induct:
assumes "P []" and "\<And>x. P [x]"
and "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x#xs)"
shows "P x"
using assms
apply(induct x)
apply simp
apply(case_tac x, clarify)
apply simp+
done
lemma nat_le_massage:
assumes "addr \<le> l" and "l \<le> Suc (addr)"
shows "addr = l \<or> Suc addr = l"
using assms by auto
lemma list_comprehension_singleton:
shows "[(x, y) \<leftarrow> [(u, v)]. y = v] = [(u,v)]"
by simp
lemma dom_2:
shows "dom [k1 \<mapsto> v1, k2 \<mapsto> v2] = {k1, k2}"
by auto
lemma nth_the_technical:
assumes "4194316 \<le> x" and "x < 4194316 + data_size"
shows "the (replicate data_size (Some 0) ! (x - 4194316)) = 0"
using assms by(induction x; auto)
lemma interval_elim:
fixes x::nat
assumes "4194304 \<le> x" and "x < 4194316"
shows "x = 4194304 \<or> x = 4194305 \<or> x = 4194306 \<or> x = 4194307 \<or>
x = 4194308 \<or> x = 4194309 \<or> x = 4194310 \<or> x = 4194311 \<or>
x = 4194312 \<or> x = 4194313 \<or> x = 4194314 \<or> x = 4194315"
using assms by presburger
lemma findLowestKVWithKEquivTo_Some_empty:
assumes "well_behaved_lem_ordering (isLess_method key_dict) (isLessEqual_method key_dict) (isGreater_method key_dict) (compare_method key_dict)"
and "well_behaved_lem_ordering (isLess_method val_dict) (isLessEqual_method val_dict) (isGreater_method val_dict) (compare_method val_dict)"
shows "findLowestKVWithKEquivTo key_dict val_dict element eq {} (Some candidate) = Some candidate"
using assms
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where b="infinite {}" and c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False])
apply(simp, rule tup2_dict_preserves_well_behavedness, simp, simp, simp)
apply(subst chooseAndSplit_empty)
apply(simp only: option.case)
done
lemma findHighestKVWithKEquivTo_Some_empty:
assumes "well_behaved_lem_ordering (isLess_method key_dict) (isLessEqual_method key_dict) (isGreater_method key_dict) (compare_method key_dict)"
and "well_behaved_lem_ordering (isLess_method val_dict) (isLessEqual_method val_dict) (isGreater_method val_dict) (compare_method val_dict)"
shows "findHighestKVWithKEquivTo key_dict val_dict element eq {} (Some candidate) = Some candidate"
using assms
apply(subst findHighestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where b="infinite {}" and c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False])
apply(simp, rule tup2_dict_preserves_well_behavedness, simp, simp, simp)
apply(subst chooseAndSplit_empty)
apply(simp only: option.case)
done
lemma findLowestKVWithKEquivTo_singleton_None:
assumes "well_behaved_lem_ordering (isLess_method key_dict) (isLessEqual_method key_dict) (isGreater_method key_dict) (compare_method key_dict)"
and "well_behaved_lem_ordering (isLess_method val_dict) (isLessEqual_method val_dict) (isGreater_method val_dict) (compare_method val_dict)"
and "e = (ek, ev)" and "eq element ek"
shows "findLowestKVWithKEquivTo key_dict val_dict element eq {e} None = Some e"
using assms
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where b="infinite {e}" and c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False])
apply(simp, rule tup2_dict_preserves_well_behavedness, simp, simp)
apply(simp only: if_False)
apply(subst chooseAndSplit_singleton, rule tup2_dict_preserves_well_behavedness, simp, simp)
apply(simp only: option.case split if_True)
apply(simp only: split Let_def)
apply(rule findLowestKVWithKEquivTo_Some_empty)
apply simp_all
done
lemma findHighestKVWithKEquivTo_singleton_None:
assumes "well_behaved_lem_ordering (isLess_method key_dict) (isLessEqual_method key_dict) (isGreater_method key_dict) (compare_method key_dict)"
and "well_behaved_lem_ordering (isLess_method val_dict) (isLessEqual_method val_dict) (isGreater_method val_dict) (compare_method val_dict)"
and "e = (ek, ev)" and "eq element ek"
shows "findHighestKVWithKEquivTo key_dict val_dict element eq {e} None = Some e"
using assms
apply(subst findHighestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where b="infinite {e}" and c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False])
apply(simp, rule tup2_dict_preserves_well_behavedness, simp, simp)
apply(simp only: if_False)
apply(subst chooseAndSplit_singleton, rule tup2_dict_preserves_well_behavedness, simp, simp)
apply(simp only: option.case split if_True)
apply(simp only: split Let_def)
apply(rule findHighestKVWithKEquivTo_Some_empty)
apply simp_all
done
section {* Start of the proof proper *}
text {* The following section contains technical lemmas directly tied to the proof of our theorem,
which is found at the very end of this section. *}
text {* Result of encoding the MOV instruction according to Anthony's model. Note we are generic
in the absolute address that we are moving to, providing that address obeys some signed-integer
bounds that are guaranteed by the valid_address assertion guarding our main theorem statement. *}
lemma encode_Zmov_in_concrete:
assumes "(18446744071562067968::64 word) <=s addr \<and> addr <=s (2147483647::64 word)"
and "word_extract 7 0 addr = a1" and "word_extract 15 8 addr = a2" and "word_extract 23 16 addr = a3"
and "word_extract 31 24 addr = a4"
shows "encode (Zmov (Z_ALWAYS, Z64, Zrm_i (Zm (None, ZnoBase, addr), 5))) =
[72, 199, 4, 37, a1, a2, a3, a4, 5, 0, 0, 0]"
using assms
apply(simp only: encode.simps instruction.case split Zcond.case Zsize.case)
apply(simp only: Zdest_src.case split Zrm.case)
apply(simp only: e_rm_imm.simps e_ModRM.simps Zrm.case split option.case)
apply(simp only: Zbase.case list.case split append.simps)
apply(simp only: e_opsize_imm.simps e_opsize.simps Zsize.case)
apply(subst if_weak_cong[where b="Z64 = Z64 \<and> True" and c="True"], simp)
apply(simp only: if_True Zsize.case Let_def split)
apply(simp only: e_imm32.simps concrete_evaluations simp_thms if_True list.case)
apply(simp only: option.case split concat.simps list.case concrete_evaluations)
apply simp
done
text {* Commutation lemma for the build_fixed_program_memory function: `loading' the fixed program
into memory (i.e. constructing a finite map from `64 word' to `8 word') at a given address, and then
trying to look up from another address, is the same as indexing into the encoded program's byte
list at the lookup address minus the loading address. *}
lemma build_fixed_program_memory_commute:
fixes bytes :: "8 word list"
assumes "addr \<le> l \<and> l < addr + List.length bytes" and "bytes \<noteq> []" and
"l \<in> unats 64"
shows "(build_fixed_program_memory addr bytes) (of_nat l) = bytes ! (l - addr)"
using assms unfolding build_fixed_program_memory_def
apply(induction bytes arbitrary: addr rule: empty_singleton_induct)
apply simp
apply(simp only: build_fixed_program_code_memory.simps Let_def)
apply(simp only: map_of.simps fst_def snd_def split)
apply(erule conjE)
apply(drule nat_le_massage, simp)
apply(erule disjE; clarify)
apply(subst word_unat.Abs_inverse, simp)
apply(simp only: fun_upd_apply refl if_True option.case, simp)
apply(subst word_unat.Abs_inverse, simp)
apply(simp)
apply(simp only: build_fixed_program_code_memory.simps Let_def)
apply(simp only: map_of.simps fst_def snd_def split)
apply(subst word_unat.Abs_inverse, simp)
apply(case_tac "l = addr"; clarify)
apply(simp only: fun_upd_apply refl if_True option.case, simp)
apply(simp only: fun_upd_apply if_False)
apply(subst (asm) word_unat.Abs_inverse, simp)
apply auto
done
lemma pairLess_Ref_Ref_technical:
shows "pairLess (instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))
(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)) = False"
by eval
lemma pairLess_Def_Def_technical:
shows "pairLess (instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (SymbolDef def_rec0, Some (''.data'', addr, 4))
(SymbolDef def_rec0, Some (''.data'', addr, 4)) = False"
unfolding instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
apply(simp only: Ord_class.simps pairLess.simps tagCompare.simps)
apply(auto simp add: symDefCompare_refl)
apply(simp add: maybeCompare.simps pairCompare.simps)
apply(simp only: stringCompare_method_refl ordering.case)
apply(subst (asm) pairCompare_refl)
apply(rule allI, simp add: genericCompare_refl)
apply simp
done
lemma isGreater_method_technical:
shows "isGreater_method
(instance_Basic_classes_Ord_tup2_dict (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))
(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)) (SymbolDef def_rec0, Some (''.data'', addr, 4))"
unfolding instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_string_dict_def instance_Basic_classes_Ord_Maybe_maybe_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
apply(simp only: Ord_class.simps pairCompare.simps pairGreater_def pairLess.simps)
apply(simp only: tagCompare.simps)
apply auto
done
lemma set_choose_technical_Ref_2:
shows "{x \<in> {(SymbolRef ref_and_reloc_rec0, Some (''.text'', (4::nat), (4::nat))), (SymbolDef def_rec0, Some (''.data'', addr, 4))}.
EQ = pairCompare
(tagCompare
\<lparr>compare_method = anyAbiFeatureCompare, isLess_method = \<lambda>f1 f2. anyAbiFeatureCompare f1 f2 = LT, isLessEqual_method = \<lambda>f1 f2. anyAbiFeatureCompare f1 f2 \<in> {LT, EQ},
isGreater_method = \<lambda>f1 f2. anyAbiFeatureCompare f1 f2 = GT, isGreaterEqual_method = \<lambda>f1 f2. anyAbiFeatureCompare f1 f2 \<in> {GT, EQ}\<rparr>)
(maybeCompare (pairCompare (compare_method instance_Basic_classes_Ord_string_dict) (pairCompare (genericCompare op < op =) (genericCompare op < op =)))) x
(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))} = {(SymbolRef ref_and_reloc_rec0, Some (''.text'', (4::nat), (4::nat)))}"
apply(rule equalityI)
apply(rule subsetI)
apply(drule CollectD)
apply(erule conjE)
apply simp
apply(erule disjE)
apply clarify+
apply(simp add: pairCompare.simps tagCompare.simps)
apply(rule subsetI)
apply simp
apply(auto simp add: pairCompare.simps tagCompare.simps symRefAndRelocSiteCompare_refl)
apply(simp only: instance_Basic_classes_Ord_string_dict_def Ord_class.simps)
apply(simp only: maybeCompare.simps pairCompare.simps stringCompare_method_refl ordering.case)
apply(case_tac "genericCompare (op <) (op =) (4::nat) 4"; simp)
apply(metis genericCompare_refl[where 'a=nat] ordering.simps)+
done
lemma set_choose_technical_Def_2:
shows "{x \<in> {(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4)),
(SymbolDef def_rec0, Some (''.data'', addr, 4))} .
EQ = pairCompare (compare_method (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict))
(compare_method
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))
x (SymbolDef def_rec0, Some (''.data'', addr, 4))} = {(SymbolDef def_rec0, Some (''.data'', addr, 4))}"
apply(rule equalityI)
apply(rule subsetI)
apply(drule CollectD)
apply(erule conjE)
apply simp
apply(erule disjE)
apply clarify+
apply(simp add: pairCompare.simps tagCompare.simps instance_Basic_classes_Ord_Memory_image_range_tag_dict_def)
apply(simp add: pairCompare.simps)
apply(rule subsetI)
apply simp
apply(auto simp add: pairCompare.simps tagCompare.simps symRefAndRelocSiteCompare_refl)
apply(simp only: instance_Basic_classes_Ord_string_dict_def Ord_class.simps)
apply(simp only: instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
Ord_class.simps tagCompare.simps)
apply(subst symDefCompare_refl)
apply(simp only: ordering.simps)
apply(simp add: instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_Num_natural_dict_def maybeCompare.simps pairCompare.simps)
apply(subst stringCompare_method_refl)
apply(simp add: ordering.simps)
apply(subst pairCompare_refl, rule allI)
apply(simp add: genericCompare_refl)
apply simp
done
lemma findHighestKVWithKEquivTo_technical_Ref_Ref_None:
shows "findHighestKVWithKEquivTo (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(SymbolRef null_symbol_reference_and_reloc_site) (tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict)
{(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)), (SymbolDef def_rec0, Some (''.data'', addr, 4))} None =
Some (SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))"
apply(subst findHighestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c=False], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: if_False)
apply(simp only: insert_commute)
apply(rule disjE[OF chooseAndSplit_less_2[where dict="(instance_Basic_classes_Ord_tup2_dict (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))"
and ?element2.0="(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))" and ?element1.0="(SymbolDef def_rec0, Some (''.data'', addr, 4))"]])
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def)
apply simp
apply(simp add: Ord_class.simps pairLess.simps tagCompare.simps maybeCompare.simps pairCompare.simps)
apply(subst option.case_cong_weak[where option'="Some ({}, (SymbolDef def_rec0, Some (''.data'', addr, 4)), {(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))})"], simp)
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c=True])
apply(simp only: instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def)
apply(simp add: tagCompare.simps)
apply(simp only: if_True)
apply(rule findHighestKVWithKEquivTo_singleton_None)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(rule refl)
apply(simp add: tagEquiv.simps)
apply(subst option.case_cong_weak[where option'="Some ({(SymbolDef def_rec0, Some (''.data'', addr, 4))}, (SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)), {})"], simp)
apply(simp only: option.case split tagEquiv.simps if_True Let_def)
apply(rule findHighestKVWithKEquivTo_Some_empty)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
done
lemma findLowestKVWithKEquivTo_technical_Ref_Ref_None:
shows "findLowestKVWithKEquivTo (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(SymbolRef null_symbol_reference_and_reloc_site) (tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict)
{(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)), (SymbolDef def_rec0, Some (''.data'', addr, 4))} None = Some (SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))"
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c=False], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: if_False insert_commute)
apply(rule disjE[OF chooseAndSplit_less_2[where dict="(instance_Basic_classes_Ord_tup2_dict (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))"
and ?element2.0="(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))" and ?element1.0="(SymbolDef def_rec0, Some (''.data'', addr, 4))"]])
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_tup2_dict_def
instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def)
apply(simp add: pairLess.simps tagCompare.simps)
apply(subst option.case_cong_weak[where option'="Some ({}, (SymbolDef def_rec0, Some (''.data'', addr, 4)), {(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))})"], simp)
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c="False"])
apply(simp only: instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
Ord_class.simps tagCompare.simps ordering.simps)
apply(simp only: if_False)
apply(rule findLowestKVWithKEquivTo_singleton_None)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(rule refl)
apply(simp only: tagEquiv.simps)
apply(subst option.case_cong_weak[where option'="Some ({(SymbolDef def_rec0, Some (''.data'', addr, 4))}, (SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)), {})"], simp)
apply(simp only: option.case split tagEquiv.simps if_True Let_def)
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c=False], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: if_False)
apply(subst chooseAndSplit_singleton)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c=False])
apply(simp only: instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
Ord_class.simps tagCompare.simps ordering.simps)
apply(simp only: if_False)
apply(rule findLowestKVWithKEquivTo_Some_empty)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)
apply(rule natural_dict_well_behaved)
done
lemma lookupBy0_Ref_Ref_singleton:
shows "lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef null_symbol_reference_and_reloc_site)
{(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4)), (SymbolDef def_rec0, Some (''.data'', addr, 4))} =
[(SymbolRef ref_and_reloc_rec0, Some (''.text'', 4, 4))]"
using assms
apply(simp only: lookupBy0_def)
apply(subst findLowestKVWithKEquivTo_technical_Ref_Ref_None)
apply(simp only: option.case)
apply(subst findHighestKVWithKEquivTo_technical_Ref_Ref_None)
apply(simp only: option.case Let_def)
apply(subst split_greater_2)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(rule isGreater_method_technical)
apply(simp only: split split_empty list_of_set_empty append_Nil2)
apply(subst pairLess_Ref_Ref_technical)
apply(simp only: if_False append_Nil2)
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps)
apply(subst set_choose_technical_Ref_2)
apply(simp only: list_of_set_singleton)
done
lemma findLowestKVWithKEquivTo_Def_Ref_Def_technical:
shows "findLowestKVWithKEquivTo (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(SymbolDef null_symbol_definition) (tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict)
{(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4)),
(SymbolDef def_rec0, Some (''.data'', addr, 4))}
None = Some (SymbolDef def_rec0, Some (''.data'', addr, 4))"
apply(subst findLowestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c="False"], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: if_False)
apply(rule disjE[OF chooseAndSplit_greater_2[where dict="(instance_Basic_classes_Ord_tup2_dict (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))"
and ?element2.0="(SymbolDef def_rec0, Some (''.data'', addr, 4))" and ?element1.0="(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4))"]])
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps)
apply(simp only: pairGreater_def pairLess.simps Ord_class.simps tagCompare.simps, simp)
apply(subst option.case_cong_weak[where option'="Some ({(SymbolDef def_rec0, Some (''.data'', addr, 4))},
(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4)),
{})"], assumption)
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c=True])
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps, simp)
apply(simp only: if_True)
apply(rule findLowestKVWithKEquivTo_singleton_None)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(rule refl)
apply(simp only: tagEquiv.simps)
apply(subst option.case_cong_weak[where option'="Some ({}, (SymbolDef def_rec0, Some (''.data'', addr, 4)),
{(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4))})"], assumption)
apply(simp only: option.case split)
apply(simp only: tagEquiv.simps if_True split Let_def)
apply(rule findLowestKVWithKEquivTo_Some_empty)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
done
lemma findHighestKVWithKEquivTo_Def_Ref_Def_technical:
shows "findHighestKVWithKEquivTo (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(SymbolDef null_symbol_definition) (tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict)
{(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4)),
(SymbolDef def_rec0, Some (''.data'', addr, 4))}
None = Some (SymbolDef def_rec0, Some (''.data'', addr, 4))"
apply(subst findHighestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c="False"], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c="False"], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: if_False)
apply(rule disjE[OF chooseAndSplit_greater_2[where dict="(instance_Basic_classes_Ord_tup2_dict (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict
(instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))))"
and ?element2.0="(SymbolDef def_rec0, Some (''.data'', addr, 4))" and ?element1.0="(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4))"]])
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps)
apply(simp only: pairGreater_def pairLess.simps Ord_class.simps tagCompare.simps, simp)
apply(subst option.case_cong_weak[where option'="Some ({(SymbolDef def_rec0, Some (''.data'', addr, 4))},
(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4)),
{})"], assumption)
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c=False])
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps, simp)
apply(simp only: if_False)
apply(rule findHighestKVWithKEquivTo_singleton_None)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(rule refl)
apply(simp only: tagEquiv.simps)
apply(subst option.case_cong_weak[where option'="Some ({}, (SymbolDef def_rec0, Some (''.data'', addr, 4)),
{(SymbolRef \<lparr>ref = ref_rec0,
maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>,
Some (''.text'', 4, 4))})"], assumption)
apply(simp only: option.case split tagEquiv.simps if_True Let_def)
apply(subst findHighestKVWithKEquivTo.simps)
apply(subst if_weak_cong[where c=False], simp)
apply(simp only: if_False)
apply(subst if_weak_cong[where c=False], simp)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: if_False)
apply(subst chooseAndSplit_singleton)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: option.case split tagEquiv.simps if_False)
apply(subst if_weak_cong[where c=False])
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_tup2_dict_def
Ord_class.simps instance_Basic_classes_Ord_Maybe_maybe_dict_def instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def pairCompare.simps maybeCompare.simps tagCompare.simps, simp)
apply(simp only: if_False)
apply(rule findHighestKVWithKEquivTo_Some_empty)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
done
lemma lookupBy0_Def_Def_singleton:
shows "lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict)
(instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)))
(tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolDef null_symbol_definition)
{(SymbolRef \<lparr>ref = ref_rec0, maybe_reloc = Some \<lparr>ref_relent = \<lparr>elf64_ra_offset = uint64_of_nat 0, elf64_ra_info = 10, elf64_ra_addend = 0\<rparr>, ref_rel_scn = 0, ref_rel_idx = 0, ref_src_scn = 0\<rparr>,
maybe_def_bound_to = Some (ApplyReloc, Some def_rec0)\<rparr>, Some (''.text'', 4, 4)), (SymbolDef def_rec0, Some (''.data'', addr, 4))} = [(SymbolDef def_rec0, Some (''.data'', addr, 4))]"
apply(subst lookupBy0_def)
apply(subst findLowestKVWithKEquivTo_Def_Ref_Def_technical)
apply(simp only: option.case)
apply(subst findHighestKVWithKEquivTo_Def_Ref_Def_technical)
apply(simp only: option.case split Let_def)
apply(subst split_less_2)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_tup2_dict_def Ord_class.simps instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Maybe_maybe_dict_def pairLess.simps tagCompare.simps, simp)
apply(simp only: split)
apply(subst split_singleton_diff)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule tag_dict_preserves_well_behavedness)
apply(rule any_abi_feature_dict_well_behaved)
apply(rule maybe_dict_preserves_well_behavedness)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule string_dict_well_behaved)
apply(rule tup2_dict_preserves_well_behavedness)
apply(rule natural_dict_well_behaved)+
apply(simp only: instance_Basic_classes_Ord_Num_natural_dict_def instance_Basic_classes_Ord_string_dict_def
instance_Basic_classes_Ord_tup2_dict_def Ord_class.simps instance_Basic_classes_Ord_Memory_image_range_tag_dict_def
instance_Basic_classes_Ord_Maybe_maybe_dict_def pairLess.simps tagCompare.simps, simp)
apply(simp only: split)
apply(simp only: list_of_set_empty append_Nil2)
apply(subst set_choose_technical_Def_2)
apply(simp only: list_of_set_singleton)
apply(subst pairLess_Def_Def_technical)
apply(simp only: if_False)
apply simp
done
lemma img1_technical:
assumes "length (natural_to_le_byte_list (4194316 + offset)) \<le> 4"
shows "img1 offset data_size [72, 199, 4, 37, 0, 0, 0, 0, 5, 0, 0, 0] =
\<lparr>elements = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>,
''.text'' \<mapsto> \<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + offset)) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + offset))) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]\<rparr>],
by_range = {(Some (''.data'', offset, 4), SymbolDef def_rec0)}, by_tag = {(SymbolDef def_rec0, Some (''.data'', offset, 4))}\<rparr>"
using assms
apply(simp only: img1_def rev.simps append.simps meta0_def list.set by_tag_from_by_range_def
list.map map_of.simps fst_def snd_def split)
apply(simp only: swap_pairs_rewrite)
apply(simp only: Let_def)
apply(simp only: sysv_amd64_std_abi_def relocate_output_image_def annotated_memory_image.simps)
apply(subst lookupBy0_Ref_Ref_singleton)
apply(subst Let_def)
apply(simp only: foldl.simps split abi.simps range_tag.case Let_def ref_and_reloc_rec0_def
symbol_reference_and_reloc_site.simps option.case reloc_site.simps annotated_memory_image.simps
reloc_decision.case)
apply(simp only: get_elf64_relocation_a_type_def extract_elf64_relocation_r_type_def
elf64_relocation_a.simps)
apply(simp only: Let_def r_x86_64_pc32_def concrete_evaluations)
apply(simp only: instance_Basic_classes_Ord_Abis_any_abi_feature_dict_def
instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict_def amd64_reloc_def Let_def)
apply(simp only: string_of_amd64_relocation_type_def)
apply(simp only: r_x86_64_none_def r_x86_64_64_def r_x86_64_pc32_def r_x86_64_plt32_def r_x86_64_got32_def
r_x86_64_copy_def r_x86_64_glob_dat_def r_x86_64_jump_slot_def r_x86_64_relative_def
r_x86_64_gotpcrel_def r_x86_64_32_def simp_thms if_True)
apply(subgoal_tac "unat (uint64_land (of_int (int 10)) (of_int (int (65536 * 65536 - 1)))) = 10")
apply(subst if_weak_cong[where b="unat (uint64_land (of_int (int 10)) (of_int (int (65536 * 65536 - 1)))) = 0" and c=False], simp, simp only: if_False)+
apply(subst if_weak_cong[where b="10=1" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=2" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=3" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=4" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=5" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=6" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=7" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=8" and c=False], simp, simp only: if_False)
apply(subst if_weak_cong[where b="10=9" and c=False], simp, simp only: if_False)
apply(simp del: natural_to_le_byte_list.simps)
apply(simp only: elf_memory_image_defined_symbols_and_ranges_def tagged_ranges_matching_tag_def
annotated_memory_image.simps write_natural_field_def element.simps element_and_offset_to_address.simps
list.case if_True Let_def)
apply(subst lookupBy0_Def_Def_singleton)+
apply(simp only: mapMaybe.simps split range_tag.case option.case list_comprehension_singleton
list.case fun_upd_apply refl if_True element.simps)
apply(simp only: take.simps)
apply(subst if_weak_cong[where b="4-1-1-1-1=0" and c="True"], simp, simp only: if_True)
apply(simp only: drop.simps)
apply(subst if_weak_cong[where b="4+4-1-1-1-1-1-1-1-1=0" and c="True"], simp, simp only: if_True)
apply(subst if_weak_cong[where b="4=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1-1-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(subst if_weak_cong[where b="4+4-1-1-1-1-1-1-1=0" and c="False"], simp, simp only: if_False)
apply(simp only: simp_thms if_False)
apply(simp del: natural_to_le_byte_list.simps)
apply eval
done
lemma build_fixed_program_memory_commute_miss_lower:
fixes bytes :: "8 word list"
assumes "x < addr" and "x \<in> unats 64"
shows "build_fixed_program_memory addr bytes (of_nat x) = 0"
using assms unfolding build_fixed_program_memory_def
apply(induction bytes arbitrary: addr)
apply(simp only: build_fixed_program_code_memory.simps map_of.simps)
apply simp
apply(simp only: build_fixed_program_code_memory.simps map_of.simps fst_def snd_def split)
apply(simp only: Let_def)
apply(case_tac "unat (of_nat x) = addr")
apply(subst word_unat.Abs_inverse, simp)+
apply(subst (asm) word_unat.Abs_inverse, simp)
apply(subst (asm) word_unat.Abs_inverse[where 'a="64"], simp)
apply(simp only: fun_upd_apply if_False)
apply(subst word_unat.Abs_inverse, simp)+
apply(subst (asm) word_unat.Abs_inverse, simp)
apply(subst (asm) word_unat.Abs_inverse[where 'a="64"], simp)
apply auto[1]
done
lemma build_fixed_program_memory_commute_miss_higher:
fixes bytes :: "8 word list"
assumes "x \<ge> addr + List.length bytes" and "x \<in> unats 64"
shows "build_fixed_program_memory addr bytes (of_nat x) = 0"
using assms unfolding build_fixed_program_memory_def
apply(induction bytes arbitrary: addr)
apply(simp only: build_fixed_program_code_memory.simps map_of.simps)
apply simp
apply(simp only: build_fixed_program_code_memory.simps map_of.simps fst_def snd_def split)
apply(simp only: Let_def)
apply(case_tac "unat (of_nat x) = addr")
apply(subst word_unat.Abs_inverse, simp)+
apply(subst (asm) word_unat.Abs_inverse, simp)
apply(subst (asm) word_unat.Abs_inverse[where 'a="64"], simp)
apply simp
apply(subst word_unat.Abs_inverse, simp)+
apply(subst (asm) word_unat.Abs_inverse, simp)
apply(subst (asm) word_unat.Abs_inverse[where 'a="64"], simp)
apply auto[1]
done
lemma set_comprehension_collapse_miss_lower:
assumes "x < 4194304"
shows "{s. \<exists>k\<in>{''.data'', ''.text''}.
Some s = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>, ''.text'' \<mapsto>
\<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]\<rparr>]
k \<and>
the (startpos s) \<le> x \<and> x < the (startpos s) + the (length1 s)} = {}"
using assms
apply(auto simp del: foldr.simps natural_to_le_byte_list.simps)
done
lemma set_comprehension_collapse_hit:
fixes x :: "nat"
assumes "4194304 \<le> x" and "x < 4194316"
shows "{s. \<exists>k\<in>{''.data'', ''.text''}.
Some s = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>, ''.text'' \<mapsto>
\<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list ((4194316::nat) + (addr - 4194316)))) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]\<rparr>]
k \<and>
the (startpos s) \<le> unat ((of_nat x)::64 word) \<and> unat ((of_nat x)::64 word) < the (startpos s) + the (length1 s)} =
{ \<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]\<rparr> }"
using assms
apply(auto simp del: foldr.simps natural_to_le_byte_list.simps)
apply(subst (asm) word_unat.Abs_inverse, simp only: unats_def, simp)+
apply(subst word_unat.Abs_inverse, simp only: unats_def, simp)+
apply assumption
apply(subst word_unat.Abs_inverse, simp only: unats_def, simp, assumption)
done
lemma set_comprehension_elim_text_technical:
assumes "4194304 \<le> x" and "x < 4194316"
shows "{s. \<exists>k\<in>{''.data'', ''.text''}.
Some s = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>,
''.text'' \<mapsto> \<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) (Some (of_nat 0))) @ [Some 5, Some 0, Some 0, Some 0]\<rparr>]
k \<and> the (startpos s) \<le> x \<and> x < the (startpos s) + the (length1 s)} =
{\<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) (Some (of_nat 0))) @ [Some 5, Some 0, Some 0, Some 0]\<rparr>}"
using assms
apply(auto simp del: foldr.simps natural_to_le_byte_list.simps)
done
declare [[show_types]]
lemma valid_address_minus_rearrange:
assumes "valid_address start data_size addr"
shows "start + (addr - start) = addr"
using assms unfolding valid_address_def by simp
lemma set_comprehension_elim_data_technical:
fixes data_size addr x :: "nat"
shows "valid_address (4194316::nat) data_size addr \<Longrightarrow>
4194316 \<le> x \<Longrightarrow> x < 4194316 + data_size \<Longrightarrow>
{s. \<exists>k\<in>{''.data'', ''.text''}.
Some s = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>,
''.text'' \<mapsto> \<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) ((Some (of_nat 0)::8 word option))) @ [Some 5, Some 0, Some 0, Some 0]\<rparr>]
k \<and> the (startpos s) \<le> unat ((of_nat x)::64 word) \<and> unat ((of_nat x)::64 word) < the (startpos s) + the (length1 s)} =
{\<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>}"
using assms unfolding valid_address_def
apply(auto simp del: foldr.simps natural_to_le_byte_list.simps)
apply(subst (asm) word_unat.Abs_inverse)+
apply(simp add: unats_def valid_address_def)
apply(simp add: unats_def valid_address_def)
apply(subst (asm) word_unat.Abs_inverse)+
apply(simp add: unats_def valid_address_def)
apply simp
apply(subst (asm) word_unat.Abs_inverse)+
apply(simp add: unats_def valid_address_def)
apply(simp add: unats_def valid_address_def)
apply(subst (asm) word_unat.Abs_inverse)+
apply(simp add: unats_def valid_address_def)
apply simp
apply(subst (asm) word_unat.Abs_inverse)
apply(simp add: unats_def valid_address_def)
apply(subst (asm) word_unat.Abs_inverse)
apply(simp add: unats_def valid_address_def)
apply auto
apply(subst word_unat.Abs_inverse)
apply(simp add: unats_def valid_address_def)
apply assumption
apply(subst word_unat.Abs_inverse)
apply(simp add: unats_def valid_address_def)
apply assumption
done
lemma set_comprehension_elim_neither_technical:
shows "4194316 + data_size \<le> (x::nat) \<Longrightarrow> (x::nat) < 18446744073709551616 \<Longrightarrow> {s. \<exists>k\<in>{''.data'', ''.text''}.
Some s = [''.data'' \<mapsto> \<lparr>startpos = Some 4194316, length1 = Some data_size, contents = replicate data_size (Some 0)\<rparr>, ''.text'' \<mapsto>
\<lparr>startpos = Some 4194304, length1 = Some 12,
contents = (([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list (4194316 + (addr - 4194316))) []) @
replicate (4 - length (natural_to_le_byte_list (4194316 + (addr - 4194316)))) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]\<rparr>]
k \<and>
the (startpos s) \<le> unat ((of_nat x)::64 word) \<and> unat ((of_nat x)::64 word) < the (startpos s) + the (length1 s)} = {}"
apply(auto simp del: foldr.simps natural_to_le_byte_list.simps)
apply(subst (asm) word_unat.Abs_inverse, auto simp add: unats_def)+
done
lemma mask_ucast_technical:
shows "ucast (of_nat addr AND mask (8::nat)) = (of_nat (addr mod (256::nat))::8 word)"
sorry
lemma valid_address_natural_to_le_byte_list_elim:
assumes "valid_address 4194316 data_size addr"
shows "(\<exists>b1 b2 b3 b4. natural_to_le_byte_list addr = [b1, b2, b3, b4]) \<or>
(\<exists>b1 b2 b3. natural_to_le_byte_list addr = [b1, b2, b3])"
using assms unfolding valid_address_def
apply -
apply(erule conjE)+
apply(rule dec_induct, assumption)
apply(rule disjI2)
apply(rule exI[where x="12"])
apply(rule exI[where x="0"])
apply(rule exI[where x="64"])
apply eval
apply(erule disjE)
apply(erule exE)+
apply(subst (asm) natural_to_le_byte_list.simps)
apply(rule disjI1)
apply(rule exI)+
apply(simp only: Let_def)
apply(case_tac "n div (256::nat) = (0::nat)", simp, clarify)
sorry
lemma list_eq_discharge_technical:
assumes "4194304 \<le> x \<and> x < 4194316"
shows "[72, 199, 4, 37, word_extract 7 0 ((of_nat addr)::64 word), word_extract 15 8 ((of_nat addr)::64 word), word_extract 23 16 ((of_nat addr)::64 word), word_extract 31 24 ((of_nat addr)::64 word), 5, 0, 0, 0] ! (x - 4194304) =
the (((([Some 72, Some 199, Some 4, Some 37] @ foldr (\<lambda>b. op # (Some b)) (natural_to_le_byte_list addr) []) @
replicate (4 - length (natural_to_le_byte_list addr)) (Some (of_nat 0))) @
[Some 5, Some 0, Some 0, Some 0]) !
(x - 4194304))"
using assms
apply(simp del: natural_to_le_byte_list.simps word_extract.simps)
apply(erule conjE)
apply(drule interval_elim, assumption)
apply(erule disjE, clarify)
apply simp
apply(erule disjE, clarify)
apply simp
apply(erule disjE, clarify)
apply simp
apply(erule disjE, clarify)
apply simp
apply(erule disjE, clarify)
apply(simp add: mask_ucast_technical)
apply(erule disjE, clarify)
apply simp
lemma valid_address_64_bit_overflow:
assumes "1 \<le> data_size" and "valid_address 4194316 data_size addr"
shows "18446744071562067968 <=s of_nat addr \<and> of_nat addr <=s 2147483647"
using assms unfolding valid_address_def
apply simp
apply(erule conjE)+
apply(rule conjI)
sorry
text {* Proof of the main correctness theorem. *}
theorem
shows "correctness_property"
unfolding correctness_property_def
apply(rule allI)+
apply(simp only: Let_def)
apply(rule impI)+
apply(rule ballI)
apply(subst load_fixed_program_instructions_def)
apply(simp only: fixed_program_def mov_constant_to_mem_def Let_def)
apply(subst encode_Zmov_in_concrete, rule valid_address_64_bit_overflow, assumption+)
apply(rule refl)+
apply(simp only: relocation_image_def relocatable_program_def
mov_constant_to_mem_def)
apply(subst encode_Zmov_in_concrete, simp, simp only: concrete_evaluations, (rule refl)+)
apply(simp only: concrete_evaluations)
apply(subst img1_technical)
apply(rule valid_address_four_bytes)
apply(subst add_diff_inverse_nat, simp add: valid_address_def, assumption)
apply(simp only: annotated_memory_image.simps)
apply(simp only: load_relocated_program_image_def X64_state.ext_inject)
apply(simp only: X64_state.simps)
apply(simp only: X64_memory_of_memory_image_def dom_2)
apply(simp only: Let_def)
apply(subgoal_tac "x < 4194304 \<or> x \<ge> 4194304 \<and> x < 4194316 \<or> x \<ge> 4194316 \<and> x < 4194316 + data_size \<or> x \<ge> 4194316 + data_size \<and> x < 18446744073709551616")
apply(erule disjE)
apply(subst build_fixed_program_memory_commute_miss_lower, simp, simp)
apply(subst word_unat.Abs_inverse, simp only: unats_def, simp)+
apply(subst set_comprehension_collapse_miss_lower, assumption)
apply(simp only: refl if_True)
apply(erule disjE, erule conjE)
apply(subst build_fixed_program_memory_commute, simp, simp, simp add: unats_def)
apply(subst set_comprehension_collapse_hit, simp, simp)
apply(subst if_weak_cong[where c=False], simp)
apply(simp only: if_False)
apply(subst word_unat.Abs_inverse, simp only: unats_def, simp)+
apply(subst set_comprehension_elim_text_technical, simp, simp)+
apply(simp only: the_elem_eq element.simps option.sel append.simps)
apply(subst list_eq_discharge_technical, simp, simp)
apply(erule disjE, erule conjE)
apply(subst build_fixed_program_memory_commute_miss_higher, simp, simp add: unats_def)
apply(subst set_comprehension_elim_data_technical, assumption, assumption, assumption)+
apply(subst word_unat.Abs_inverse, simp add: unats_def)+
apply(subst if_weak_cong[where c=False], simp, simp only: if_False)
apply(simp only: the_elem_eq element.simps option.sel)
apply(simp only: nth_the_technical)
apply(subst build_fixed_program_memory_commute_miss_higher, simp, simp)+
apply(subst set_comprehension_elim_neither_technical, simp, simp)+
apply(auto simp add: unats_def)
done
end
|