File: L3_Lib.thy

package info (click to toggle)
linksem 0.8%2Bdfsg3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,376 kB
  • sloc: asm: 9,188; ansic: 5,856; ml: 2,918; yacc: 1,310; lex: 721; sh: 119; makefile: 63
file content (370 lines) | stat: -rw-r--r-- 16,242 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
(*  Title: L3_Lib.thy
    Author: Anthony Fox, University of Cambridge

L3 operations.
*)

theory L3_Lib
imports "$ISABELLE_HOME/src/HOL/Word/Word"
begin

(* basic state Monad *)

definition "return = Pair"
declare return_def [simp add]

fun bind :: "('state \<Rightarrow> ('a \<times> 'state)) \<Rightarrow>
             ('a \<Rightarrow> 'state \<Rightarrow> ('b \<times> 'state)) \<Rightarrow>
             ('state \<Rightarrow> ('b \<times> 'state))" where
  "bind f g = (\<lambda>s. let (a, s') = f s in g a s')"

fun read_state :: "('state \<Rightarrow> 'a) \<Rightarrow> 'state \<Rightarrow> 'a \<times> 'state" where
  "read_state f = (\<lambda>s. (f s, s))"

fun update_state :: "('state \<Rightarrow> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where
  "update_state f = (\<lambda>s. ((), f s))"

fun extend_state :: "'b \<Rightarrow> ('b \<times> 'state \<Rightarrow> 'a \<times> 'b \<times> 'state) \<Rightarrow> 'state \<Rightarrow> 'a \<times> 'state" where
  "extend_state v f = (\<lambda>s. let (a, s') = f (v, s) in (a, snd s'))"

fun trim_state :: "('state \<Rightarrow> 'a \<times> 'state) \<Rightarrow> 'b \<times> 'state \<Rightarrow> 'a \<times> 'b \<times> 'state" where
  "trim_state f = (\<lambda>(s1, s2). let (a, s') = f s2 in (a, s1, s'))"

fun foreach_loop :: "'a list \<times> ('a \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where
  "foreach_loop ([], _) = return ()" |
  "foreach_loop (h # t, a) = bind (a h) (\<lambda>u. foreach_loop (t, a))"

function for_loop :: "nat \<times> nat \<times> (nat \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where
  "for_loop (i, j, a) =
   (if i = j then
      a i
    else
      bind (a i) (\<lambda>u. for_loop ((if i < j then i + 1 else i - 1), j, a)))"
  by auto
  termination by (relation "measure (\<lambda>(i, j, _). if i < j then j - i else i - j)") auto

(* extra character operations *)

fun Ord :: "char \<Rightarrow> nat" where
   "Ord (Char nh nl) = nat_of_nibble nh * 16 + nat_of_nibble nl"

fun Chr :: "nat \<Rightarrow> char" where
   "Chr n = Char (nibble_of_nat (n div 16)) (nibble_of_nat n)"

fun is_lower :: "char \<Rightarrow> bool" where
   "is_lower c = (Ord (CHR ''a'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''z''))"

fun is_upper :: "char \<Rightarrow> bool" where
   "is_upper c = (Ord (CHR ''A'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''Z''))"

fun is_space :: "char \<Rightarrow> bool" where
   "is_space c = (Ord (CHR '' '') = Ord c \<or> 9 \<le> Ord c \<and> Ord c \<le> 13)"

fun is_digit :: "char \<Rightarrow> bool" where
   "is_digit c = (Ord (CHR ''0'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''9''))"

fun is_hex_digit :: "char \<Rightarrow> bool" where
   "is_hex_digit c = (is_digit c \<or> Ord (CHR ''a'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''f'') \<or>
                                   Ord (CHR ''A'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''F''))"

fun is_alpha :: "char \<Rightarrow> bool" where
   "is_alpha c = (is_lower c \<or> is_upper c)"

fun is_alpha_num :: "char \<Rightarrow> bool" where
   "is_alpha_num c = (is_alpha c \<or> is_digit c)"

fun to_lower :: "char \<Rightarrow> char" where
   "to_lower c = (if is_upper c then Chr (Ord c + 32) else c)"

fun to_upper :: "char \<Rightarrow> char" where
   "to_upper c = (if is_lower c then Chr (Ord c - 32) else c)"

(* numeric strings *)

fun list_to_nat :: "nat \<Rightarrow> nat list \<Rightarrow> nat" where
  "list_to_nat _ [] = 0" |
  "list_to_nat base (h # t) = h mod base + base * list_to_nat base t"

fun nat_to_list :: "nat \<Rightarrow> nat \<Rightarrow> nat list" where
  "nat_to_list base n =
   (if n < base \<or> base < 2 then [n mod base] else n mod base # nat_to_list base (n div base))"

fun hex :: "nat \<Rightarrow> char" where
  "hex n = (if n = 0 then CHR ''0''
            else if n = 1 then CHR ''1''
            else if n = 2 then CHR ''2''
            else if n = 3 then CHR ''3''
            else if n = 4 then CHR ''4''
            else if n = 5 then CHR ''5''
            else if n = 6 then CHR ''6''
            else if n = 7 then CHR ''7''
            else if n = 8 then CHR ''8''
            else if n = 9 then CHR ''9''
            else if n = 10 then CHR ''A''
            else if n = 11 then CHR ''B''
            else if n = 12 then CHR ''C''
            else if n = 13 then CHR ''D''
            else if n = 14 then CHR ''E''
            else if n = 15 then CHR ''F''
            else undefined)"

fun unhex :: "char \<Rightarrow> nat" where
  "unhex c = (if c = CHR ''0'' then 0
              else if c = CHR ''1'' then 1
              else if c = CHR ''2'' then 2
              else if c = CHR ''3'' then 3
              else if c = CHR ''4'' then 4
              else if c = CHR ''5'' then 5
              else if c = CHR ''6'' then 6
              else if c = CHR ''7'' then 7
              else if c = CHR ''8'' then 8
              else if c = CHR ''9'' then 9
              else if c = CHR ''a'' \<or> c = CHR ''A'' then 10
              else if c = CHR ''b'' \<or> c = CHR ''B'' then 11
              else if c = CHR ''c'' \<or> c = CHR ''C'' then 12
              else if c = CHR ''d'' \<or> c = CHR ''D'' then 13
              else if c = CHR ''e'' \<or> c = CHR ''E'' then 14
              else if c = CHR ''f'' \<or> c = CHR ''F'' then 15
              else undefined)"

fun string_to_nat :: "nat \<Rightarrow> string \<Rightarrow> nat" where
  "string_to_nat base s = list_to_nat base (map unhex (rev s))"

fun nat_to_string :: "nat \<Rightarrow> nat \<Rightarrow> string" where
  "nat_to_string base n = rev (map hex (nat_to_list base n))"

definition "bin_string_to_nat \<equiv> string_to_nat 2"
definition "nat_to_bin_string \<equiv> nat_to_string 2"
definition "dec_string_to_nat \<equiv> string_to_nat 10"
definition "nat_to_dec_string \<equiv> nat_to_string 10"
definition "hex_string_to_nat \<equiv> string_to_nat 16"
definition "nat_to_hex_string \<equiv> nat_to_string 16"

fun nat_from_bin_string :: "string \<Rightarrow> nat option" where
  "nat_from_bin_string s =
   (if s \<noteq> '''' \<and> list_all (\<lambda>c. c = CHR ''0'' \<or> c = CHR ''1'') s then
      Some (bin_string_to_nat s)
    else None)"

fun nat_from_dec_string :: "string \<Rightarrow> nat option" where
  "nat_from_dec_string s =
   (if s \<noteq> '''' \<and> list_all is_digit s then Some (dec_string_to_nat s) else None)"

fun nat_from_hex_string :: "string \<Rightarrow> nat option" where
  "nat_from_hex_string s =
   (if s \<noteq> '''' \<and> list_all is_hex_digit s then Some (hex_string_to_nat s) else None)"

fun dec_string_to_int :: "string \<Rightarrow> int" where
  "dec_string_to_int (CHR ''-'' # r) = -int (dec_string_to_nat r)" |
  "dec_string_to_int (CHR ''~'' # r) = -int (dec_string_to_nat r)" |
  "dec_string_to_int r = int (dec_string_to_nat r)"

fun int_to_dec_string :: "int \<Rightarrow> string" where
  "int_to_dec_string i =
   (if i < 0 then CHR ''~'' # nat_to_dec_string (nat (-i)) else nat_to_dec_string (nat i))"

fun string_to_bool :: "string \<Rightarrow> bool" where
  "string_to_bool s = (if s = ''true'' then True
                       else if s = ''false'' then False
                       else undefined)"

fun string_to_char :: "string \<Rightarrow> char" where
  "string_to_char [c] = c" |
  "string_to_char _ = undefined"

(* extra Nat operation *)

fun log2 :: "nat \<Rightarrow> nat" where
  "log2 n = (if n = 0 then undefined else if n = 1 then 0 else Suc (log2 (n div 2)))"

(* extra int operations *)

fun quot :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "quot" 70) where
  "i quot j = (if j = 0 then undefined
               else if 0 < j then if 0 \<le> i then i div j else -(-i div j)
               else if 0 \<le> i then -(i div -j)
               else -i div -j)"

fun rem :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "rem" 70) where
  "i rem j = (if j = 0 then undefined else i - i quot j * j)"

fun quot_rem :: "int * int \<Rightarrow> int * int" where
  "quot_rem (i, j) = (i div j, i rem j)"

(* extra option operations *)

fun is_some :: "'a option \<Rightarrow> bool" where
  "is_some (Some _) = True" |
  "is_some _ = False"

(* extra list operations *)

fun splitl :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where
  "splitl _ [] = ([], [])" |
  "splitl P (h # t) = (if P h then let (l, r) = splitl P t in (h # l, r) else ([], h # t))"

fun splitr :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where
  "splitr P x = (let (l, r) = splitl P (rev x) in (rev r, rev l))"

fun pad_left :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "pad_left c n s = replicate (n - length s) c @ s"

fun pad_right :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "pad_right c n s = s @ replicate (n - length s) c"

fun index_find :: "nat \<Rightarrow> 'a \<times> 'a list \<Rightarrow> nat option" where
  "index_find _ (_, []) = None" |
  "index_find i (v, h # t) = (if v = h then Some i else index_find (Suc i) (v, t))"

definition "index_of = index_find 0"
declare index_of_def [simp add]

fun remove :: "'a list * 'a list \<Rightarrow> 'a list" where
  "remove (l1, l2) = filter (\<lambda>x. x \<notin> set l1) l2"

fun remove_except :: "'a list * 'a list \<Rightarrow> 'a list" where
  "remove_except (l1, l2) = filter (\<lambda>x. x \<in> set l1) l2"

fun remove_duplicates :: "'a list \<Rightarrow> 'a list" where
  "remove_duplicates [] = []" |
  "remove_duplicates (h # t) = (if h \<in> set t then remove_duplicates t else h # remove_duplicates t)"

(* extra string operations *)

lemma splitl_length [simp]:
  shows "length (snd (splitl P x)) \<le> length x"
  by (induct x, auto simp add: case_prod_beta)

lemma fields_termination_lem [simp]:
  assumes "a \<noteq> []" and "length a \<le> length c"
  shows "length a - b < Suc (length c)"
  by (simp add: assms(2) le_imp_less_Suc less_imp_diff_less)

function (sequential) tokens :: "(char \<Rightarrow> bool) \<Rightarrow> string \<Rightarrow> string list" where
  "tokens _ '''' = []" |
  "tokens P x =
   (let (l, r) = splitl (\<lambda>e. ~P e) x in if l = [] then tokens P (tl r) else l # tokens P r)"
  by pat_completeness auto
  termination tokens
  apply (relation "measure (length o snd)")
  apply auto
  apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc)
  apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc)
  done

function (sequential) fields :: "(char \<Rightarrow> bool) \<Rightarrow> string \<Rightarrow> string list" where
  "fields _ '''' = [[]]" |
  "fields P x =
   (let (l, r) = splitl (\<lambda>e. ~P e) x in if l = [] then [] # fields P (tl r)
                                        else if r = [] then [l]
                                        else l # fields P (tl r))"
  by pat_completeness auto
  termination fields
  apply (relation "measure (length o snd)")
  apply auto
  apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc)
  apply (case_tac "~ P v", auto simp add: case_prod_beta)
  done

(* bit-string operations - extends Bool_List_Representation.thy *)

fun nat_to_bitstring :: "nat \<Rightarrow> bool list" where
  "nat_to_bitstring 0 = [False]" |
  "nat_to_bitstring n = bin_to_bl (log2 n + 1) (int n)"

definition "bitstring_to_nat = nat o bl_to_bin"

fun fixwidth :: "nat \<Rightarrow> bool list \<Rightarrow> bool list" where
  "fixwidth n v = (let l = length v in if l < n then pad_left False n v else drop (l - n) v)"

fun bitwise :: "(bool \<Rightarrow> bool \<Rightarrow> bool) \<Rightarrow> bool list \<Rightarrow> bool list \<Rightarrow> bool list" where
  "bitwise f v1 v2 =
   (let m = max (length v1) (length v2) in map (case_prod f) (zip (fixwidth m v1) (fixwidth m v2)))"

definition "bor  = bitwise (op \<or>)"
definition "band = bitwise (op \<and>)"
definition "bxor = bitwise (op \<noteq>)"

fun bitstring_shiftl :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where
  "bitstring_shiftl v m = pad_right False (length v + m) v"

fun bitstring_shiftr :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where
  "bitstring_shiftr v m = take (length v - m) v"

fun bitstring_field :: "nat \<Rightarrow> nat \<Rightarrow> bool list \<Rightarrow> bool list" where
  "bitstring_field h l v = fixwidth (Suc h - l) (bitstring_shiftr v l)"

fun bitstring_rotate :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where
  "bitstring_rotate v m =
   (let l = length v in
    let x = m mod l in
      if l = 0 \<or> x = 0 then v else bitstring_field (x - 1) 0 v @ bitstring_field (l - 1) x v)"

fun bitstring_test_bit :: "bool list \<Rightarrow> nat \<Rightarrow> bool" where
  "bitstring_test_bit v n = (bitstring_field n n v = [True])"

fun bitstring_modify ::  "(nat \<times> bool \<Rightarrow> bool) \<times> bool list \<Rightarrow> bool list" where
  "bitstring_modify (f, l) = map f (zip (rev (upt 0 (length l))) l)"

fun bitstring_field_insert :: "nat \<Rightarrow> nat \<Rightarrow> bool list \<Rightarrow> bool list \<Rightarrow> bool list" where
  "bitstring_field_insert h l v1 v2 =
   bitstring_modify (\<lambda>(i, b). if l \<le> i \<and> i \<le> h then bitstring_test_bit v1 (i - l) else b, v2)"

(* extra word operations *)

fun unsigned_min :: "'a::len word \<times> 'a::len word \<Rightarrow> 'a::len word" where
  "unsigned_min (w1, w2) = (if w1 \<le> w2 then w1 else w2)"

fun unsigned_max :: "'a::len word \<times> 'a::len word \<Rightarrow> 'a::len word" where
  "unsigned_max (w1, w2) = (if w1 \<le> w2 then w2 else w1)"

fun word_log2 :: "'a::len word \<Rightarrow> 'a::len word" where
  "word_log2 w = of_nat (log2 (unat w))"

fun word_quot :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where
  "word_quot i j = of_int (sint i quot sint j)"

fun word_rem :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where
  "word_rem i j = of_int (sint i rem sint j)"

fun word_modify :: "(nat \<times> bool \<Rightarrow> bool) \<times> 'a::len word \<Rightarrow> 'a::len word" where
  "word_modify (f, w) = of_bl (bitstring_modify (f, to_bl w))"

fun word_bit_field_insert :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word" where
  "word_bit_field_insert h l w1 w2 =
   word_modify (\<lambda>(i, b). if l \<le> i \<and> i \<le> h then test_bit w1 (i - l) else b, w2)"

fun word_bits :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where
  "word_bits h l w = (w >> l) AND mask (Suc h - l)"

fun word_extract :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word" where
  "word_extract h l w = ucast (word_bits h l w)"

fun word_replicate :: "nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word" where
  "word_replicate n a = word_rcat (replicate n a)"

(* floating-point stubs *)

datatype rounding = roundTiesToEven | roundTowardPositive | roundTowardNegative | roundTowardZero

consts
  fp32_is_nan :: "32 word \<Rightarrow> bool"
  fp32_abs :: "32 word \<Rightarrow> 32 word"
  fp32_negate :: "32 word \<Rightarrow> 32 word"
  fp32_equal :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool"
  fp32_less :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool"
  fp32_add :: "rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word"
  fp32_sub :: "rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word"
  fp32_mul :: "rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word"

consts
  fp64_is_nan :: "64 word \<Rightarrow> bool"
  fp64_abs :: "64 word \<Rightarrow> 64 word"
  fp64_negate :: "64 word \<Rightarrow> 64 word"
  fp64_equal :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool"
  fp64_less :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool"
  fp64_add :: "rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word"
  fp64_sub :: "rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word"
  fp64_mul :: "rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word"

end