1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/// Consolidated tests for recursive debianization functionality
mod common;
use breezyshim::workingtree::WorkingTree;
use common::*;
use debianize::debianize;
use std::collections::{HashMap, HashSet};
use std::path::Path;
use tempfile::TempDir;
use upstream_ontologist::UpstreamMetadata;
#[test]
#[serial_test::serial]
fn test_basic_debianization() {
let _image_cached = match DebianImageCached::new() {
Ok(cached) => cached,
Err(e) => {
eprintln!("Failed to cache Debian image: {:?}", e);
return;
}
};
let testenv = breezyshim::testing::TestEnv::new();
let temp_dir = TempDir::new().unwrap();
let (repo_path, wt) = create_test_python_repo(&temp_dir, "main-package");
// Create simple package with no dependencies
create_simple_python_package(&wt, "main-package", "0.1.0", &[]);
// Debianize
let preferences = default_test_preferences();
let metadata = UpstreamMetadata::new();
let result = debianize(
&wt,
Path::new(""),
Some(&wt.branch()),
Some(Path::new("")),
&preferences,
Some("0.1.0"),
&metadata,
);
assert!(result.is_ok(), "Debianization failed: {:?}", result.err());
let result = result.unwrap();
assert_eq!(result.upstream_version, Some("0.1.0".to_string()));
// Verify debian files exist
assert_debian_files_exist(&wt);
// Verify control file content
let control_content = read_cleaned_control(&repo_path);
assert!(control_content.contains("Source: python-main-package"));
assert!(control_content.contains("Package: python3-main-package"));
std::mem::drop(testenv);
}
#[test]
fn test_circular_dependency_detection() {
// Test that circular dependencies are detected
let mut visited = HashSet::new();
let mut stack = vec!["package-a"];
let mut circular_detected = false;
// Simulate dependency graph: A -> B -> A
let dep_graph = HashMap::from([
("package-a", vec!["package-b"]),
("package-b", vec!["package-a"]),
]);
while let Some(current) = stack.pop() {
if !visited.insert(current) {
circular_detected = true;
break;
}
if let Some(deps) = dep_graph.get(current) {
stack.extend(deps);
}
}
assert!(circular_detected, "Should detect circular dependency");
}
#[test]
fn test_transitive_dependency_resolution() {
// Test A -> B -> C dependency chain resolution
let mut resolution_order = Vec::new();
// Build dependency graph
let dep_graph = HashMap::from([
("package-a", vec!["package-b"]),
("package-b", vec!["package-c"]),
("package-c", vec![]),
]);
// Topological sort to determine build order
fn resolve_build_order(
package: &str,
graph: &HashMap<&str, Vec<&str>>,
visited: &mut HashSet<String>,
order: &mut Vec<String>,
) {
if visited.contains(package) {
return;
}
if let Some(deps) = graph.get(package) {
for dep in deps {
resolve_build_order(dep, graph, visited, order);
}
}
visited.insert(package.to_string());
order.push(package.to_string());
}
let mut visited = HashSet::new();
resolve_build_order("package-a", &dep_graph, &mut visited, &mut resolution_order);
// Verify the correct build order: C first, then B, then A
assert_eq!(
resolution_order,
vec!["package-c", "package-b", "package-a"]
);
// Verify dependencies are built before dependents
for (i, package) in resolution_order.iter().enumerate() {
if let Some(deps) = dep_graph.get(package.as_str()) {
for dep in deps {
let dep_index = resolution_order.iter().position(|p| p == dep).unwrap();
assert!(dep_index < i, "{} should be built before {}", dep, package);
}
}
}
}
|