1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#include <linux/linkage.h>
#include <linux/sched.h>
#include <asm/pmon.h>
#include <asm/titan_dep.h>
#include <asm/time.h>
#define LAUNCHSTACK_SIZE 256
static __initdata DEFINE_SPINLOCK(launch_lock);
static unsigned long secondary_sp __initdata;
static unsigned long secondary_gp __initdata;
static unsigned char launchstack[LAUNCHSTACK_SIZE] __initdata
__attribute__((aligned(2 * sizeof(long))));
static void __init prom_smp_bootstrap(void)
{
local_irq_disable();
while (spin_is_locked(&launch_lock));
__asm__ __volatile__(
" move $sp, %0 \n"
" move $gp, %1 \n"
" j smp_bootstrap \n"
:
: "r" (secondary_sp), "r" (secondary_gp));
}
/*
* PMON is a fragile beast. It'll blow up once the mappings it's littering
* right into the middle of KSEG3 are blown away so we have to grab the slave
* core early and keep it in a waiting loop.
*/
void __init prom_grab_secondary(void)
{
spin_lock(&launch_lock);
pmon_cpustart(1, &prom_smp_bootstrap,
launchstack + LAUNCHSTACK_SIZE, 0);
}
/*
* Detect available CPUs, populate phys_cpu_present_map before smp_init
*
* We don't want to start the secondary CPU yet nor do we have a nice probing
* feature in PMON so we just assume presence of the secondary core.
*/
void __init plat_smp_setup(void)
{
int i;
cpus_clear(phys_cpu_present_map);
for (i = 0; i < 2; i++) {
cpu_set(i, phys_cpu_present_map);
__cpu_number_map[i] = i;
__cpu_logical_map[i] = i;
}
}
void __init plat_prepare_cpus(unsigned int max_cpus)
{
/*
* Be paranoid. Enable the IPI only if we're really about to go SMP.
*/
if (cpus_weight(cpu_possible_map))
set_c0_status(STATUSF_IP5);
}
/*
* Firmware CPU startup hook
* Complicated by PMON's weird interface which tries to minimic the UNIX fork.
* It launches the next * available CPU and copies some information on the
* stack so the first thing we do is throw away that stuff and load useful
* values into the registers ...
*/
void __cpuinit prom_boot_secondary(int cpu, struct task_struct *idle)
{
unsigned long gp = (unsigned long) task_thread_info(idle);
unsigned long sp = __KSTK_TOS(idle);
secondary_sp = sp;
secondary_gp = gp;
spin_unlock(&launch_lock);
}
/* Hook for after all CPUs are online */
void prom_cpus_done(void)
{
}
/*
* After we've done initial boot, this function is called to allow the
* board code to clean up state, if needed
*/
void __cpuinit prom_init_secondary(void)
{
set_c0_status(ST0_CO | ST0_IE | ST0_IM);
}
void __cpuinit prom_smp_finish(void)
{
}
void titan_mailbox_irq(void)
{
int cpu = smp_processor_id();
unsigned long status;
switch (cpu) {
case 0:
status = OCD_READ(RM9000x2_OCD_INTP0STATUS3);
OCD_WRITE(RM9000x2_OCD_INTP0CLEAR3, status);
if (status & 0x2)
smp_call_function_interrupt();
break;
case 1:
status = OCD_READ(RM9000x2_OCD_INTP1STATUS3);
OCD_WRITE(RM9000x2_OCD_INTP1CLEAR3, status);
if (status & 0x2)
smp_call_function_interrupt();
break;
}
}
/*
* Send inter-processor interrupt
*/
void core_send_ipi(int cpu, unsigned int action)
{
/*
* Generate an INTMSG so that it can be sent over to the
* destination CPU. The INTMSG will put the STATUS bits
* based on the action desired. An alternative strategy
* is to write to the Interrupt Set register, read the
* Interrupt Status register and clear the Interrupt
* Clear register. The latter is preffered.
*/
switch (action) {
case SMP_RESCHEDULE_YOURSELF:
if (cpu == 1)
OCD_WRITE(RM9000x2_OCD_INTP1SET3, 4);
else
OCD_WRITE(RM9000x2_OCD_INTP0SET3, 4);
break;
case SMP_CALL_FUNCTION:
if (cpu == 1)
OCD_WRITE(RM9000x2_OCD_INTP1SET3, 2);
else
OCD_WRITE(RM9000x2_OCD_INTP0SET3, 2);
break;
}
}
|