1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
|
/*
Copyright (c) 2015-2016, Apple Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder(s) nor the names of any contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "lzfse_internal.h"
#include "lzvn_decode_base.h"
/*! @abstract Decode an entry value from next bits of stream.
* Return \p value, and set \p *nbits to the number of bits to consume
* (starting with LSB). */
static inline int lzfse_decode_v1_freq_value(uint32_t bits, int *nbits) {
static const int8_t lzfse_freq_nbits_table[32] = {
2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14,
2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14};
static const int8_t lzfse_freq_value_table[32] = {
0, 2, 1, 4, 0, 3, 1, -1, 0, 2, 1, 5, 0, 3, 1, -1,
0, 2, 1, 6, 0, 3, 1, -1, 0, 2, 1, 7, 0, 3, 1, -1};
uint32_t b = bits & 31; // lower 5 bits
int n = lzfse_freq_nbits_table[b];
*nbits = n;
// Special cases for > 5 bits encoding
if (n == 8)
return 8 + ((bits >> 4) & 0xf);
if (n == 14)
return 24 + ((bits >> 4) & 0x3ff);
// <= 5 bits encoding from table
return lzfse_freq_value_table[b];
}
/*! @abstract Extracts up to 32 bits from a 64-bit field beginning at
* \p offset, and zero-extends them to a \p uint32_t.
*
* If we number the bits of \p v from 0 (least significant) to 63 (most
* significant), the result is bits \p offset to \p offset+nbits-1. */
static inline uint32_t get_field(uint64_t v, int offset, int nbits) {
if (nbits == 32)
return (uint32_t)(v >> offset);
return (uint32_t)((v >> offset) & ((1 << nbits) - 1));
}
/*! @abstract Return \c header_size field from a \c lzfse_compressed_block_header_v2. */
static inline uint32_t
lzfse_decode_v2_header_size(const lzfse_compressed_block_header_v2 *in) {
return get_field(in->packed_fields[2], 0, 32);
}
/*! @abstract Decode all fields from a \c lzfse_compressed_block_header_v2 to a
* \c lzfse_compressed_block_header_v1.
* @return 0 on success.
* @return -1 on failure. */
static inline int lzfse_decode_v1(lzfse_compressed_block_header_v1 *out,
const lzfse_compressed_block_header_v2 *in) {
uint64_t v0;
uint64_t v1;
uint64_t v2;
uint16_t *dst = NULL;
const uint8_t *src = NULL;
const uint8_t *src_end = NULL;
uint32_t accum = 0;
int accum_nbits = 0;
int nbits = 0;
int i;
// Clear all fields
memset(out, 0x00, sizeof(lzfse_compressed_block_header_v1));
v0 = in->packed_fields[0];
v1 = in->packed_fields[1];
v2 = in->packed_fields[2];
out->magic = LZFSE_COMPRESSEDV1_BLOCK_MAGIC;
out->n_raw_bytes = in->n_raw_bytes;
// Literal state
out->n_literals = get_field(v0, 0, 20);
out->n_literal_payload_bytes = get_field(v0, 20, 20);
out->literal_bits = (int)get_field(v0, 60, 3) - 7;
out->literal_state[0] = get_field(v1, 0, 10);
out->literal_state[1] = get_field(v1, 10, 10);
out->literal_state[2] = get_field(v1, 20, 10);
out->literal_state[3] = get_field(v1, 30, 10);
// L,M,D state
out->n_matches = get_field(v0, 40, 20);
out->n_lmd_payload_bytes = get_field(v1, 40, 20);
out->lmd_bits = (int)get_field(v1, 60, 3) - 7;
out->l_state = get_field(v2, 32, 10);
out->m_state = get_field(v2, 42, 10);
out->d_state = get_field(v2, 52, 10);
// Total payload size
out->n_payload_bytes =
out->n_literal_payload_bytes + out->n_lmd_payload_bytes;
// Freq tables
dst = &(out->l_freq[0]);
src = &(in->freq[0]);
src_end =
(const uint8_t *)in + get_field(v2, 0, 32); // first byte after header
accum = 0;
accum_nbits = 0;
// No freq tables?
if (src_end == src)
return 0; // OK, freq tables were omitted
for (i = 0; i < LZFSE_ENCODE_L_SYMBOLS + LZFSE_ENCODE_M_SYMBOLS +
LZFSE_ENCODE_D_SYMBOLS + LZFSE_ENCODE_LITERAL_SYMBOLS;
i++) {
// Refill accum, one byte at a time, until we reach end of header, or accum
// is full
while (src < src_end && accum_nbits + 8 <= 32) {
accum |= (uint32_t)(*src) << accum_nbits;
accum_nbits += 8;
src++;
}
// Decode and store value
nbits = 0;
dst[i] = lzfse_decode_v1_freq_value(accum, &nbits);
if (nbits > accum_nbits)
return -1; // failed
// Consume nbits bits
accum >>= nbits;
accum_nbits -= nbits;
}
if (accum_nbits >= 8 || src != src_end)
return -1; // we need to end up exactly at the end of header, with less than
// 8 bits in accumulator
return 0;
}
static inline void copy(uint8_t *dst, const uint8_t *src, size_t length) {
const uint8_t *dst_end = dst + length;
do {
copy8(dst, src);
dst += 8;
src += 8;
} while (dst < dst_end);
}
static int lzfse_decode_lmd(lzfse_decoder_state *s) {
lzfse_compressed_block_decoder_state *bs = &(s->compressed_lzfse_block_state);
fse_state l_state = bs->l_state;
fse_state m_state = bs->m_state;
fse_state d_state = bs->d_state;
fse_in_stream in = bs->lmd_in_stream;
const uint8_t *src_start = s->src_begin;
const uint8_t *src = s->src + bs->lmd_in_buf;
const uint8_t *lit = bs->current_literal;
uint8_t *dst = s->dst;
uint32_t symbols = bs->n_matches;
int32_t L = bs->l_value;
int32_t M = bs->m_value;
int32_t D = bs->d_value;
int32_t new_d;
// Number of bytes remaining in the destination buffer, minus 32 to
// provide a margin of safety for using overlarge copies on the fast path.
// This is a signed quantity, and may go negative when we are close to the
// end of the buffer. That's OK; we're careful about how we handle it
// in the slow-and-careful match execution path.
ptrdiff_t remaining_bytes = s->dst_end - dst - 32;
// If L or M is non-zero, that means that we have already started decoding
// this block, and that we needed to interrupt decoding to get more space
// from the caller. There's a pending L, M, D triplet that we weren't
// able to completely process. Jump ahead to finish executing that symbol
// before decoding new values.
if (L || M)
goto ExecuteMatch;
while (symbols > 0) {
int res;
// Decode the next L, M, D symbol from the input stream.
res = fse_in_flush(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
L = fse_value_decode(&l_state, bs->l_decoder, &in);
if ((lit + L) >= (bs->literals + LZFSE_LITERALS_PER_BLOCK + 64)) {
return LZFSE_STATUS_ERROR;
}
res = fse_in_flush2(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
M = fse_value_decode(&m_state, bs->m_decoder, &in);
res = fse_in_flush2(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
new_d = fse_value_decode(&d_state, bs->d_decoder, &in);
D = new_d ? new_d : D;
symbols--;
ExecuteMatch:
// Error if D is out of range, so that we avoid passing through
// uninitialized data or accesssing memory out of the destination
// buffer.
if ((uint32_t)D > dst + L - s->dst_begin)
return LZFSE_STATUS_ERROR;
if (L + M <= remaining_bytes) {
size_t i;
// If we have plenty of space remaining, we can copy the literal
// and match with 16- and 32-byte operations, without worrying
// about writing off the end of the buffer.
remaining_bytes -= L + M;
copy(dst, lit, L);
dst += L;
lit += L;
// For the match, we have two paths; a fast copy by 16-bytes if
// the match distance is large enough to allow it, and a more
// careful path that applies a permutation to account for the
// possible overlap between source and destination if the distance
// is small.
if (D >= 8 || D >= M)
copy(dst, dst - D, M);
else
for (i = 0; i < M; i++)
dst[i] = dst[i - D];
dst += M;
}
else {
// Otherwise, we are very close to the end of the destination
// buffer, so we cannot use wide copies that slop off the end
// of the region that we are copying to. First, we restore
// the true length remaining, rather than the sham value we've
// been using so far.
remaining_bytes += 32;
// Now, we process the literal. Either there's space for it
// or there isn't; if there is, we copy the whole thing and
// update all the pointers and lengths to reflect the copy.
if (L <= remaining_bytes) {
size_t i;
for (i = 0; i < L; i++)
dst[i] = lit[i];
dst += L;
lit += L;
remaining_bytes -= L;
L = 0;
}
// There isn't enough space to fit the whole literal. Copy as
// much of it as we can, update the pointers and the value of
// L, and report that the destination buffer is full. Note that
// we always write right up to the end of the destination buffer.
else {
size_t i;
for (i = 0; i < remaining_bytes; i++)
dst[i] = lit[i];
dst += remaining_bytes;
lit += remaining_bytes;
L -= remaining_bytes;
goto DestinationBufferIsFull;
}
// The match goes just like the literal does. We copy as much as
// we can byte-by-byte, and if we reach the end of the buffer
// before finishing, we return to the caller indicating that
// the buffer is full.
if (M <= remaining_bytes) {
size_t i;
for (i = 0; i < M; i++)
dst[i] = dst[i - D];
dst += M;
remaining_bytes -= M;
M = 0;
(void)M; // no dead store warning
// We don't need to update M = 0, because there's no partial
// symbol to continue executing. Either we're at the end of
// the block, in which case we will never need to resume with
// this state, or we're going to decode another L, M, D set,
// which will overwrite M anyway.
//
// But we still set M = 0, to maintain the post-condition.
} else {
size_t i;
for (i = 0; i < remaining_bytes; i++)
dst[i] = dst[i - D];
dst += remaining_bytes;
M -= remaining_bytes;
DestinationBufferIsFull:
// Because we want to be able to resume decoding where we've left
// off (even in the middle of a literal or match), we need to
// update all of the block state fields with the current values
// so that we can resume execution from this point once the
// caller has given us more space to write into.
bs->l_value = L;
bs->m_value = M;
bs->d_value = D;
bs->l_state = l_state;
bs->m_state = m_state;
bs->d_state = d_state;
bs->lmd_in_stream = in;
bs->n_matches = symbols;
bs->lmd_in_buf = (uint32_t)(src - s->src);
bs->current_literal = lit;
s->dst = dst;
return LZFSE_STATUS_DST_FULL;
}
// Restore the "sham" decremented value of remaining_bytes and
// continue to the next L, M, D triple. We'll just be back in
// the careful path again, but this only happens at the very end
// of the buffer, so a little minor inefficiency here is a good
// tradeoff for simpler code.
remaining_bytes -= 32;
}
}
// Because we've finished with the whole block, we don't need to update
// any of the blockstate fields; they will not be used again. We just
// update the destination pointer in the state object and return.
s->dst = dst;
return LZFSE_STATUS_OK;
}
int lzfse_decode(lzfse_decoder_state *s) {
while (1) {
// Are we inside a block?
switch (s->block_magic) {
case LZFSE_NO_BLOCK_MAGIC: {
uint32_t magic;
// We need at least 4 bytes of magic number to identify next block
if (s->src + 4 > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
magic = load4(s->src);
if (magic == LZFSE_ENDOFSTREAM_BLOCK_MAGIC) {
s->src += 4;
s->end_of_stream = 1;
return LZFSE_STATUS_OK; // done
}
if (magic == LZFSE_UNCOMPRESSED_BLOCK_MAGIC) {
uncompressed_block_decoder_state *bs = NULL;
if (s->src + sizeof(uncompressed_block_header) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Setup state for uncompressed block
bs = &(s->uncompressed_block_state);
bs->n_raw_bytes =
load4(s->src + offsetof(uncompressed_block_header, n_raw_bytes));
s->src += sizeof(uncompressed_block_header);
s->block_magic = magic;
break;
}
if (magic == LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC) {
lzvn_compressed_block_decoder_state *bs = NULL;
if (s->src + sizeof(lzvn_compressed_block_header) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Setup state for compressed LZVN block
bs = &(s->compressed_lzvn_block_state);
bs->n_raw_bytes =
load4(s->src + offsetof(lzvn_compressed_block_header, n_raw_bytes));
bs->n_payload_bytes = load4(
s->src + offsetof(lzvn_compressed_block_header, n_payload_bytes));
bs->d_prev = 0;
s->src += sizeof(lzvn_compressed_block_header);
s->block_magic = magic;
break;
}
if (magic == LZFSE_COMPRESSEDV1_BLOCK_MAGIC ||
magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
lzfse_compressed_block_header_v1 header1;
size_t header_size = 0;
lzfse_compressed_block_decoder_state *bs = NULL;
// Decode compressed headers
if (magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
const lzfse_compressed_block_header_v2 *header2;
int decodeStatus;
// Check we have the fixed part of the structure
if (s->src + offsetof(lzfse_compressed_block_header_v2, freq) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Get size, and check we have the entire structure
header2 = (const lzfse_compressed_block_header_v2 *)s->src; // not aligned, OK
header_size = lzfse_decode_v2_header_size(header2);
if (s->src + header_size > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
decodeStatus = lzfse_decode_v1(&header1, header2);
if (decodeStatus != 0)
return LZFSE_STATUS_ERROR; // failed
} else {
if (s->src + sizeof(lzfse_compressed_block_header_v1) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
memcpy(&header1, s->src, sizeof(lzfse_compressed_block_header_v1));
header_size = sizeof(lzfse_compressed_block_header_v1);
}
// We require the header + entire encoded block to be present in SRC
// during the entire block decoding.
// This can be relaxed somehow, if it becomes a limiting factor, at the
// price of a more complex state maintenance.
// For DST, we can't easily require space for the entire decoded block,
// because it may expand to something very very large.
if (s->src + header_size + header1.n_literal_payload_bytes +
header1.n_lmd_payload_bytes >
s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // need all encoded block
// Sanity checks
if (lzfse_check_block_header_v1(&header1) != 0) {
return LZFSE_STATUS_ERROR;
}
// Skip header
s->src += header_size;
// Setup state for compressed V1 block from header
bs = &(s->compressed_lzfse_block_state);
bs->n_lmd_payload_bytes = header1.n_lmd_payload_bytes;
bs->n_matches = header1.n_matches;
fse_init_decoder_table(LZFSE_ENCODE_LITERAL_STATES,
LZFSE_ENCODE_LITERAL_SYMBOLS,
header1.literal_freq, bs->literal_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_L_STATES, LZFSE_ENCODE_L_SYMBOLS, header1.l_freq,
l_extra_bits, l_base_value, bs->l_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_M_STATES, LZFSE_ENCODE_M_SYMBOLS, header1.m_freq,
m_extra_bits, m_base_value, bs->m_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_D_STATES, LZFSE_ENCODE_D_SYMBOLS, header1.d_freq,
d_extra_bits, d_base_value, bs->d_decoder);
// Decode literals
{
fse_in_stream in;
const uint8_t *buf_start = s->src_begin;
const uint8_t *buf;
fse_state state0;
fse_state state1;
fse_state state2;
fse_state state3;
uint32_t i;
s->src += header1.n_literal_payload_bytes; // skip literal payload
buf = s->src; // read bits backwards from the end
if (fse_in_init(&in, header1.literal_bits, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR;
state0 = header1.literal_state[0];
state1 = header1.literal_state[1];
state2 = header1.literal_state[2];
state3 = header1.literal_state[3];
for (i = 0; i < header1.n_literals; i += 4) // n_literals is multiple of 4
{
#if FSE_IOSTREAM_64
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [57, 64] bits
bs->literals[i + 0] =
fse_decode(&state0, bs->literal_decoder, &in); // 10b max
bs->literals[i + 1] =
fse_decode(&state1, bs->literal_decoder, &in); // 10b max
bs->literals[i + 2] =
fse_decode(&state2, bs->literal_decoder, &in); // 10b max
bs->literals[i + 3] =
fse_decode(&state3, bs->literal_decoder, &in); // 10b max
#else
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [25, 23] bits
bs->literals[i + 0] =
fse_decode(&state0, bs->literal_decoder, &in); // 10b max
bs->literals[i + 1] =
fse_decode(&state1, bs->literal_decoder, &in); // 10b max
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [25, 23] bits
bs->literals[i + 2] =
fse_decode(&state2, bs->literal_decoder, &in); // 10b max
bs->literals[i + 3] =
fse_decode(&state3, bs->literal_decoder, &in); // 10b max
#endif
}
bs->current_literal = bs->literals;
} // literals
// SRC is not incremented to skip the LMD payload, since we need it
// during block decode.
// We will increment SRC at the end of the block only after this point.
// Initialize the L,M,D decode stream, do not start decoding matches
// yet, and store decoder state
{
fse_in_stream in;
// read bits backwards from the end
const uint8_t *buf = s->src + header1.n_lmd_payload_bytes;
if (fse_in_init(&in, header1.lmd_bits, &buf, s->src) != 0)
return LZFSE_STATUS_ERROR;
bs->l_state = header1.l_state;
bs->m_state = header1.m_state;
bs->d_state = header1.d_state;
bs->lmd_in_buf = (uint32_t)(buf - s->src);
bs->l_value = bs->m_value = 0;
// Initialize D to an illegal value so we can't erroneously use
// an uninitialized "previous" value.
bs->d_value = -1;
bs->lmd_in_stream = in;
}
s->block_magic = magic;
break;
}
// Here we have an invalid magic number
return LZFSE_STATUS_ERROR;
} // LZFSE_NO_BLOCK_MAGIC
case LZFSE_UNCOMPRESSED_BLOCK_MAGIC: {
uncompressed_block_decoder_state *bs = &(s->uncompressed_block_state);
// Compute the size (in bytes) of the data that we will actually copy.
// This size is minimum(bs->n_raw_bytes, space in src, space in dst).
uint32_t copy_size = bs->n_raw_bytes; // bytes left to copy
size_t src_space, dst_space;
if (copy_size == 0) {
s->block_magic = 0;
break;
} // end of block
if (s->src_end <= s->src)
return LZFSE_STATUS_SRC_EMPTY; // need more SRC data
src_space = s->src_end - s->src;
if (copy_size > src_space)
copy_size = (uint32_t)src_space; // limit to SRC data (> 0)
if (s->dst_end <= s->dst)
return LZFSE_STATUS_DST_FULL; // need more DST capacity
dst_space = s->dst_end - s->dst;
if (copy_size > dst_space)
copy_size = (uint32_t)dst_space; // limit to DST capacity (> 0)
// Now that we know that the copy size is bounded to the source and
// dest buffers, go ahead and copy the data.
// We always have copy_size > 0 here
memcpy(s->dst, s->src, copy_size);
s->src += copy_size;
s->dst += copy_size;
bs->n_raw_bytes -= copy_size;
break;
} // LZFSE_UNCOMPRESSED_BLOCK_MAGIC
case LZFSE_COMPRESSEDV1_BLOCK_MAGIC:
case LZFSE_COMPRESSEDV2_BLOCK_MAGIC: {
int status;
lzfse_compressed_block_decoder_state *bs =
&(s->compressed_lzfse_block_state);
// Require the entire LMD payload to be in SRC
if (s->src_end <= s->src ||
bs->n_lmd_payload_bytes > (size_t)(s->src_end - s->src))
return LZFSE_STATUS_SRC_EMPTY;
status = lzfse_decode_lmd(s);
if (status != LZFSE_STATUS_OK)
return status;
s->block_magic = LZFSE_NO_BLOCK_MAGIC;
s->src += bs->n_lmd_payload_bytes; // to next block
break;
} // LZFSE_COMPRESSEDV1_BLOCK_MAGIC || LZFSE_COMPRESSEDV2_BLOCK_MAGIC
case LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC: {
lzvn_compressed_block_decoder_state *bs =
&(s->compressed_lzvn_block_state);
lzvn_decoder_state dstate;
size_t src_used, dst_used;
if (bs->n_payload_bytes > 0 && s->src_end <= s->src)
return LZFSE_STATUS_SRC_EMPTY; // need more SRC data
// Init LZVN decoder state
memset(&dstate, 0x00, sizeof(dstate));
dstate.src = s->src;
dstate.src_end = s->src_end;
if (dstate.src_end - s->src > bs->n_payload_bytes)
dstate.src_end = s->src + bs->n_payload_bytes; // limit to payload bytes
dstate.dst_begin = s->dst_begin;
dstate.dst = s->dst;
dstate.dst_end = s->dst_end;
if (dstate.dst_end - s->dst > bs->n_raw_bytes)
dstate.dst_end = s->dst + bs->n_raw_bytes; // limit to raw bytes
dstate.d_prev = bs->d_prev;
dstate.end_of_stream = 0;
// Run LZVN decoder
lzvn_decode(&dstate);
// Update our state
src_used = dstate.src - s->src;
dst_used = dstate.dst - s->dst;
if (src_used > bs->n_payload_bytes || dst_used > bs->n_raw_bytes)
return LZFSE_STATUS_ERROR; // sanity check
s->src = dstate.src;
s->dst = dstate.dst;
bs->n_payload_bytes -= (uint32_t)src_used;
bs->n_raw_bytes -= (uint32_t)dst_used;
bs->d_prev = (uint32_t)dstate.d_prev;
// Test end of block
if (bs->n_payload_bytes == 0 && bs->n_raw_bytes == 0 &&
dstate.end_of_stream) {
s->block_magic = 0;
break;
} // block done
// Check for invalid state
if (bs->n_payload_bytes == 0 || bs->n_raw_bytes == 0 ||
dstate.end_of_stream)
return LZFSE_STATUS_ERROR;
// Here, block is not done and state is valid, so we need more space in dst.
return LZFSE_STATUS_DST_FULL;
}
default:
return LZFSE_STATUS_ERROR; // invalid magic
} // switch magic
} // block loop
return LZFSE_STATUS_OK;
}
|