1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
/*
Copyright (c) 2015-2016, Apple Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder(s) nor the names of any contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// LZFSE encoder
#include "lzfse_internal.h"
#include "lzfse_encode_tables.h"
/*! @abstract Get hash in range [0, LZFSE_ENCODE_HASH_VALUES-1] from 4 bytes in X. */
static inline uint32_t hashX(uint32_t x) {
return (x * 2654435761U) >>
(32 - LZFSE_ENCODE_HASH_BITS); // Knuth multiplicative hash
}
/*! @abstract Return value with all 0 except nbits<=32 unsigned bits from V
* at bit offset OFFSET.
* V is assumed to fit on nbits bits. */
static inline uint64_t setField(uint32_t v, int offset, int nbits) {
return ((uint64_t)v << (uint64_t)offset);
}
/*! @abstract Encode all fields, except freq, from a
* lzfse_compressed_block_header_v1 to a lzfse_compressed_block_header_v2.
* All but the header_size and freq fields of the output are modified. */
static inline void
lzfse_encode_v1_state(lzfse_compressed_block_header_v2 *out,
const lzfse_compressed_block_header_v1 *in) {
out->magic = LZFSE_COMPRESSEDV2_BLOCK_MAGIC;
out->n_raw_bytes = in->n_raw_bytes;
// Literal state
out->packed_fields[0] = setField(in->n_literals, 0, 20) |
setField(in->n_literal_payload_bytes, 20, 20) |
setField(in->n_matches, 40, 20) |
setField(7 + in->literal_bits, 60, 3);
out->packed_fields[1] = setField(in->literal_state[0], 0, 10) |
setField(in->literal_state[1], 10, 10) |
setField(in->literal_state[2], 20, 10) |
setField(in->literal_state[3], 30, 10) |
setField(in->n_lmd_payload_bytes, 40, 20) |
setField(7 + in->lmd_bits, 60, 3);
out->packed_fields[2] = out->packed_fields[2] // header_size already stored in v[2]
| setField(in->l_state, 32, 10) | setField(in->m_state, 42, 10) |
setField(in->d_state, 52, 10);
}
/*! @abstract Encode an entry value in a freq table. Return bits, and sets
* *nbits to the number of bits to serialize. */
static inline uint32_t lzfse_encode_v1_freq_value(int value, int *nbits) {
// Fixed Huffman code, bits are read from LSB.
// Note that we rely on the position of the first '0' bit providing the number
// of bits.
switch (value) {
case 0:
*nbits = 2;
return 0; // 0.0
case 1:
*nbits = 2;
return 2; // 1.0
case 2:
*nbits = 3;
return 1; // 0.01
case 3:
*nbits = 3;
return 5; // 1.01
case 4:
*nbits = 5;
return 3; // 00.011
case 5:
*nbits = 5;
return 11; // 01.011
case 6:
*nbits = 5;
return 19; // 10.011
case 7:
*nbits = 5;
return 27; // 11.011
default:
break;
}
if (value < 24) {
*nbits = 8; // 4+4
return 7 + ((value - 8) << 4); // xxxx.0111
}
// 24..1047
*nbits = 14; // 4+10
return ((value - 24) << 4) + 15; // xxxxxxxxxx.1111
}
/*! @abstract Encode all tables from a lzfse_compressed_block_header_v1
* to a lzfse_compressed_block_header_v2.
* Only the header_size and freq fields of the output are modified.
* @return Size of the lzfse_compressed_block_header_v2 */
static inline size_t
lzfse_encode_v1_freq_table(lzfse_compressed_block_header_v2 *out,
const lzfse_compressed_block_header_v1 *in) {
uint32_t accum = 0;
int accum_nbits = 0;
const uint16_t *src = &(in->l_freq[0]); // first value of first table (struct
// will not be modified, so this code
// will remain valid)
uint8_t *dst = &(out->freq[0]);
for (int i = 0; i < LZFSE_ENCODE_L_SYMBOLS + LZFSE_ENCODE_M_SYMBOLS +
LZFSE_ENCODE_D_SYMBOLS + LZFSE_ENCODE_LITERAL_SYMBOLS;
i++) {
// Encode one value to accum
int nbits = 0;
uint32_t bits = lzfse_encode_v1_freq_value(src[i], &nbits);
accum |= bits << accum_nbits;
accum_nbits += nbits;
// Store bytes from accum to output buffer
while (accum_nbits >= 8) {
*dst = (uint8_t)(accum & 0xff);
accum >>= 8;
accum_nbits -= 8;
dst++;
}
}
// Store final byte if needed
if (accum_nbits > 0) {
*dst = (uint8_t)(accum & 0xff);
dst++;
}
// Return final size of out
uint32_t header_size = (uint32_t)(dst - (uint8_t *)out);
out->packed_fields[0] = 0;
out->packed_fields[1] = 0;
out->packed_fields[2] = setField(header_size, 0, 32);
return header_size;
}
// We need to limit forward match length to make sure it won't split into a too
// large number of LMD.
// The limit itself is quite large, so it doesn't really impact compression
// ratio.
// The matches may still be expanded backwards by a few bytes, so the final
// length may be greater than this limit, which is OK.
#define LZFSE_ENCODE_MAX_MATCH_LENGTH (100 * LZFSE_ENCODE_MAX_M_VALUE)
// ===============================================================
// Encoder back end
/*! @abstract Encode matches stored in STATE into a compressed/uncompressed block.
* @return LZFSE_STATUS_OK on success.
* @return LZFSE_STATUS_DST_FULL and restore initial state if output buffer is
* full. */
static int lzfse_encode_matches(lzfse_encoder_state *s) {
if (s->n_literals == 0 && s->n_matches == 0)
return LZFSE_STATUS_OK; // nothing to store, OK
uint32_t l_occ[LZFSE_ENCODE_L_SYMBOLS];
uint32_t m_occ[LZFSE_ENCODE_M_SYMBOLS];
uint32_t d_occ[LZFSE_ENCODE_D_SYMBOLS];
uint32_t literal_occ[LZFSE_ENCODE_LITERAL_SYMBOLS];
fse_encoder_entry l_encoder[LZFSE_ENCODE_L_SYMBOLS];
fse_encoder_entry m_encoder[LZFSE_ENCODE_M_SYMBOLS];
fse_encoder_entry d_encoder[LZFSE_ENCODE_D_SYMBOLS];
fse_encoder_entry literal_encoder[LZFSE_ENCODE_LITERAL_SYMBOLS];
int ok = 1;
lzfse_compressed_block_header_v1 header1 = {0};
lzfse_compressed_block_header_v2 *header2 = 0;
// Keep initial state to be able to restore it if DST full
uint8_t *dst0 = s->dst;
uint32_t n_literals0 = s->n_literals;
// Add 0x00 literals until n_literals multiple of 4, since we encode 4
// interleaved literal streams.
while (s->n_literals & 3) {
uint32_t n = s->n_literals++;
s->literals[n] = 0;
}
// Encode previous distance
uint32_t d_prev = 0;
for (uint32_t i = 0; i < s->n_matches; i++) {
uint32_t d = s->d_values[i];
if (d == d_prev)
s->d_values[i] = 0;
else
d_prev = d;
}
// Clear occurrence tables
memset(l_occ, 0, sizeof(l_occ));
memset(m_occ, 0, sizeof(m_occ));
memset(d_occ, 0, sizeof(d_occ));
memset(literal_occ, 0, sizeof(literal_occ));
// Update occurrence tables in all 4 streams (L,M,D,literals)
uint32_t l_sum = 0;
uint32_t m_sum = 0;
for (uint32_t i = 0; i < s->n_matches; i++) {
uint32_t l = s->l_values[i];
l_sum += l;
l_occ[l_base_from_value(l)]++;
}
for (uint32_t i = 0; i < s->n_matches; i++) {
uint32_t m = s->m_values[i];
m_sum += m;
m_occ[m_base_from_value(m)]++;
}
for (uint32_t i = 0; i < s->n_matches; i++)
d_occ[d_base_from_value(s->d_values[i])]++;
for (uint32_t i = 0; i < s->n_literals; i++)
literal_occ[s->literals[i]]++;
// Make sure we have enough room for a _full_ V2 header
if (s->dst + sizeof(lzfse_compressed_block_header_v2) > s->dst_end) {
ok = 0;
goto END;
}
header2 = (lzfse_compressed_block_header_v2 *)(s->dst);
// Setup header V1
header1.magic = LZFSE_COMPRESSEDV1_BLOCK_MAGIC;
header1.n_raw_bytes = m_sum + l_sum;
header1.n_matches = s->n_matches;
header1.n_literals = s->n_literals;
// Normalize occurrence tables to freq tables
fse_normalize_freq(LZFSE_ENCODE_L_STATES, LZFSE_ENCODE_L_SYMBOLS, l_occ,
header1.l_freq);
fse_normalize_freq(LZFSE_ENCODE_M_STATES, LZFSE_ENCODE_M_SYMBOLS, m_occ,
header1.m_freq);
fse_normalize_freq(LZFSE_ENCODE_D_STATES, LZFSE_ENCODE_D_SYMBOLS, d_occ,
header1.d_freq);
fse_normalize_freq(LZFSE_ENCODE_LITERAL_STATES, LZFSE_ENCODE_LITERAL_SYMBOLS,
literal_occ, header1.literal_freq);
// Compress freq tables to V2 header, and get actual size of V2 header
s->dst += lzfse_encode_v1_freq_table(header2, &header1);
// Initialize encoder tables from freq tables
fse_init_encoder_table(LZFSE_ENCODE_L_STATES, LZFSE_ENCODE_L_SYMBOLS,
header1.l_freq, l_encoder);
fse_init_encoder_table(LZFSE_ENCODE_M_STATES, LZFSE_ENCODE_M_SYMBOLS,
header1.m_freq, m_encoder);
fse_init_encoder_table(LZFSE_ENCODE_D_STATES, LZFSE_ENCODE_D_SYMBOLS,
header1.d_freq, d_encoder);
fse_init_encoder_table(LZFSE_ENCODE_LITERAL_STATES,
LZFSE_ENCODE_LITERAL_SYMBOLS, header1.literal_freq,
literal_encoder);
// Encode literals
{
fse_out_stream out;
fse_out_init(&out);
fse_state state0, state1, state2, state3;
state0 = state1 = state2 = state3 = 0;
uint8_t *buf = s->dst;
uint32_t i = s->n_literals; // I multiple of 4
// We encode starting from the last literal so we can decode starting from
// the first
while (i > 0) {
if (buf + 16 > s->dst_end) {
ok = 0;
goto END;
} // out full
i -= 4;
fse_encode(&state3, literal_encoder, &out, s->literals[i + 3]); // 10b
fse_encode(&state2, literal_encoder, &out, s->literals[i + 2]); // 10b
#if !FSE_IOSTREAM_64
fse_out_flush(&out, &buf);
#endif
fse_encode(&state1, literal_encoder, &out, s->literals[i + 1]); // 10b
fse_encode(&state0, literal_encoder, &out, s->literals[i + 0]); // 10b
fse_out_flush(&out, &buf);
}
fse_out_finish(&out, &buf);
// Update header with final encoder state
header1.literal_bits = out.accum_nbits; // [-7, 0]
header1.n_literal_payload_bytes = (uint32_t)(buf - s->dst);
header1.literal_state[0] = state0;
header1.literal_state[1] = state1;
header1.literal_state[2] = state2;
header1.literal_state[3] = state3;
// Update state
s->dst = buf;
} // literals
// Encode L,M,D
{
fse_out_stream out;
fse_out_init(&out);
fse_state l_state, m_state, d_state;
l_state = m_state = d_state = 0;
uint8_t *buf = s->dst;
uint32_t i = s->n_matches;
// Add 8 padding bytes to the L,M,D payload
if (buf + 8 > s->dst_end) {
ok = 0;
goto END;
} // out full
store8(buf, 0);
buf += 8;
// We encode starting from the last match so we can decode starting from the
// first
while (i > 0) {
if (buf + 16 > s->dst_end) {
ok = 0;
goto END;
} // out full
i -= 1;
// D requires 23b max
int32_t d_value = s->d_values[i];
uint8_t d_symbol = d_base_from_value(d_value);
int32_t d_nbits = d_extra_bits[d_symbol];
int32_t d_bits = d_value - d_base_value[d_symbol];
fse_out_push(&out, d_nbits, d_bits);
fse_encode(&d_state, d_encoder, &out, d_symbol);
#if !FSE_IOSTREAM_64
fse_out_flush(&out, &buf);
#endif
// M requires 17b max
int32_t m_value = s->m_values[i];
uint8_t m_symbol = m_base_from_value(m_value);
int32_t m_nbits = m_extra_bits[m_symbol];
int32_t m_bits = m_value - m_base_value[m_symbol];
fse_out_push(&out, m_nbits, m_bits);
fse_encode(&m_state, m_encoder, &out, m_symbol);
#if !FSE_IOSTREAM_64
fse_out_flush(&out, &buf);
#endif
// L requires 14b max
int32_t l_value = s->l_values[i];
uint8_t l_symbol = l_base_from_value(l_value);
int32_t l_nbits = l_extra_bits[l_symbol];
int32_t l_bits = l_value - l_base_value[l_symbol];
fse_out_push(&out, l_nbits, l_bits);
fse_encode(&l_state, l_encoder, &out, l_symbol);
fse_out_flush(&out, &buf);
}
fse_out_finish(&out, &buf);
// Update header with final encoder state
header1.n_lmd_payload_bytes = (uint32_t)(buf - s->dst);
header1.lmd_bits = out.accum_nbits; // [-7, 0]
header1.l_state = l_state;
header1.m_state = m_state;
header1.d_state = d_state;
// Update state
s->dst = buf;
} // L,M,D
// Final state update, here we had enough space in DST, and are not going to
// revert state
s->n_literals = 0;
s->n_matches = 0;
// Final payload size
header1.n_payload_bytes =
header1.n_literal_payload_bytes + header1.n_lmd_payload_bytes;
// Encode state info in V2 header (we previously encoded the tables, now we
// set the other fields)
lzfse_encode_v1_state(header2, &header1);
END:
if (!ok) {
// Revert state, DST was full
// Revert the d_prev encoding
uint32_t d_prev = 0;
for (uint32_t i = 0; i < s->n_matches; i++) {
uint32_t d = s->d_values[i];
if (d == 0)
s->d_values[i] = d_prev;
else
d_prev = d;
}
// Revert literal count
s->n_literals = n_literals0;
// Revert DST
s->dst = dst0;
return LZFSE_STATUS_DST_FULL; // DST full
}
return LZFSE_STATUS_OK;
}
/*! @abstract Push a L,M,D match into the STATE.
* @return LZFSE_STATUS_OK if OK.
* @return LZFSE_STATUS_DST_FULL if the match can't be pushed, meaning one of
* the buffers is full. In that case the state is not modified. */
static inline int lzfse_push_lmd(lzfse_encoder_state *s, uint32_t L,
uint32_t M, uint32_t D) {
// Check if we have enough space to push the match (we add some margin to copy
// literals faster here, and round final count later)
if (s->n_matches + 1 + 8 > LZFSE_MATCHES_PER_BLOCK)
return LZFSE_STATUS_DST_FULL; // state full
if (s->n_literals + L + 16 > LZFSE_LITERALS_PER_BLOCK)
return LZFSE_STATUS_DST_FULL; // state full
// Store match
uint32_t n = s->n_matches++;
s->l_values[n] = L;
s->m_values[n] = M;
s->d_values[n] = D;
// Store literals
uint8_t *dst = s->literals + s->n_literals;
const uint8_t *src = s->src + s->src_literal;
uint8_t *dst_end = dst + L;
if (s->src_literal + L + 16 > s->src_end) {
// Careful at the end of SRC, we can't read 16 bytes
if (L > 0)
memcpy(dst, src, L);
} else {
copy16(dst, src);
dst += 16;
src += 16;
while (dst < dst_end) {
copy16(dst, src);
dst += 16;
src += 16;
}
}
s->n_literals += L;
// Update state
s->src_literal += L + M;
return LZFSE_STATUS_OK;
}
/*! @abstract Split MATCH into one or more L,M,D parts, and push to STATE.
* @return LZFSE_STATUS_OK if OK.
* @return LZFSE_STATUS_DST_FULL if the match can't be pushed, meaning one of the
* buffers is full. In that case the state is not modified. */
static int lzfse_push_match(lzfse_encoder_state *s, const lzfse_match *match) {
// Save the initial n_matches, n_literals, src_literal
uint32_t n_matches0 = s->n_matches;
uint32_t n_literals0 = s->n_literals;
lzfse_offset src_literals0 = s->src_literal;
// L,M,D
uint32_t L = (uint32_t)(match->pos - s->src_literal); // literal count
uint32_t M = match->length; // match length
uint32_t D = (uint32_t)(match->pos - match->ref); // match distance
int ok = 1;
// Split L if too large
while (L > LZFSE_ENCODE_MAX_L_VALUE) {
if (lzfse_push_lmd(s, LZFSE_ENCODE_MAX_L_VALUE, 0, 1) != 0) {
ok = 0;
goto END;
} // take D=1 because most frequent, but not actually used
L -= LZFSE_ENCODE_MAX_L_VALUE;
}
// Split if M too large
while (M > LZFSE_ENCODE_MAX_M_VALUE) {
if (lzfse_push_lmd(s, L, LZFSE_ENCODE_MAX_M_VALUE, D) != 0) {
ok = 0;
goto END;
}
L = 0;
M -= LZFSE_ENCODE_MAX_M_VALUE;
}
// L,M in range
if (L > 0 || M > 0) {
if (lzfse_push_lmd(s, L, M, D) != 0) {
ok = 0;
goto END;
}
L = M = 0;
(void)L;
(void)M; // dead stores
}
END:
if (!ok) {
// Revert state
s->n_matches = n_matches0;
s->n_literals = n_literals0;
s->src_literal = src_literals0;
return LZFSE_STATUS_DST_FULL; // state tables full
}
return LZFSE_STATUS_OK; // OK
}
/*! @abstract Backend: add MATCH to state S. Encode block if necessary, when
* state is full.
* @return LZFSE_STATUS_OK if OK.
* @return LZFSE_STATUS_DST_FULL if the match can't be added, meaning one of the
* buffers is full. In that case the state is not modified. */
static int lzfse_backend_match(lzfse_encoder_state *s,
const lzfse_match *match) {
// Try to push the match in state
if (lzfse_push_match(s, match) == LZFSE_STATUS_OK)
return LZFSE_STATUS_OK; // OK, match added to state
// Here state tables are full, try to emit block
if (lzfse_encode_matches(s) != LZFSE_STATUS_OK)
return LZFSE_STATUS_DST_FULL; // DST full, match not added
// Here block has been emitted, re-try to push the match in state
return lzfse_push_match(s, match);
}
/*! @abstract Backend: add L literals to state S. Encode block if necessary,
* when state is full.
* @return LZFSE_STATUS_OK if OK.
* @return LZFSE_STATUS_DST_FULL if the literals can't be added, meaning one of
* the buffers is full. In that case the state is not modified. */
static int lzfse_backend_literals(lzfse_encoder_state *s, lzfse_offset L) {
// Create a fake match with M=0, D=1
lzfse_match match;
lzfse_offset pos = s->src_literal + L;
match.pos = pos;
match.ref = match.pos - 1;
match.length = 0;
return lzfse_backend_match(s, &match);
}
/*! @abstract Backend: flush final block, and emit end of stream
* @return LZFSE_STATUS_OK if OK.
* @return LZFSE_STATUS_DST_FULL if either the final block, or the end-of-stream
* can't be added, meaning one of the buffers is full. If the block was emitted,
* the state is updated to reflect this. Otherwise, it is left unchanged. */
static int lzfse_backend_end_of_stream(lzfse_encoder_state *s) {
// Final match triggers write, otherwise emit blocks when we have enough
// matches stored
if (lzfse_encode_matches(s) != LZFSE_STATUS_OK)
return LZFSE_STATUS_DST_FULL; // DST full
// Emit end-of-stream block
if (s->dst + 4 > s->dst_end)
return LZFSE_STATUS_DST_FULL; // DST full
store4(s->dst, LZFSE_ENDOFSTREAM_BLOCK_MAGIC);
s->dst += 4;
return LZFSE_STATUS_OK; // OK
}
// ===============================================================
// Encoder state management
/*! @abstract Initialize state:
* @code
* - hash table with all invalid pos, and value 0.
* - pending match to NO_MATCH.
* - src_literal to 0.
* - d_prev to 0.
@endcode
* @return LZFSE_STATUS_OK */
int lzfse_encode_init(lzfse_encoder_state *s) {
const lzfse_match NO_MATCH = {0};
lzfse_history_set line;
for (int i = 0; i < LZFSE_ENCODE_HASH_WIDTH; i++) {
line.pos[i] = -4 * LZFSE_ENCODE_MAX_D_VALUE; // invalid pos
line.value[i] = 0;
}
// Fill table
for (int i = 0; i < LZFSE_ENCODE_HASH_VALUES; i++)
s->history_table[i] = line;
s->pending = NO_MATCH;
s->src_literal = 0;
return LZFSE_STATUS_OK; // OK
}
/*! @abstract Translate state \p src forward by \p delta > 0.
* Offsets in \p src are updated backwards to point to the same positions.
* @return LZFSE_STATUS_OK */
int lzfse_encode_translate(lzfse_encoder_state *s, lzfse_offset delta) {
if (delta == 0)
return LZFSE_STATUS_OK; // OK
// SRC
s->src += delta;
// Offsets in SRC
s->src_end -= delta;
s->src_encode_i -= delta;
s->src_encode_end -= delta;
s->src_literal -= delta;
// Pending match
s->pending.pos -= delta;
s->pending.ref -= delta;
// history_table positions, translated, and clamped to invalid pos
int32_t invalidPos = -4 * LZFSE_ENCODE_MAX_D_VALUE;
for (int i = 0; i < LZFSE_ENCODE_HASH_VALUES; i++) {
int32_t *p = &(s->history_table[i].pos[0]);
for (int j = 0; j < LZFSE_ENCODE_HASH_WIDTH; j++) {
lzfse_offset newPos = p[j] - delta; // translate
p[j] = (int32_t)((newPos < invalidPos) ? invalidPos : newPos); // clamp
}
}
return LZFSE_STATUS_OK; // OK
}
// ===============================================================
// Encoder front end
int lzfse_encode_base(lzfse_encoder_state *s) {
lzfse_history_set *history_table = s->history_table;
lzfse_history_set *hashLine = 0;
lzfse_history_set newH;
const lzfse_match NO_MATCH = {0};
int ok = 1;
memset(&newH, 0x00, sizeof(newH));
// 8 byte padding at end of buffer
s->src_encode_end = s->src_end - 8;
for (; s->src_encode_i < s->src_encode_end; s->src_encode_i++) {
lzfse_offset pos = s->src_encode_i; // pos >= 0
// Load 4 byte value and get hash line
uint32_t x = load4(s->src + pos);
hashLine = history_table + hashX(x);
lzfse_history_set h = *hashLine;
// Prepare next hash line (component 0 is the most recent) to prepare new
// entries (stored later)
{
newH.pos[0] = (int32_t)pos;
for (int k = 0; k < LZFSE_ENCODE_HASH_WIDTH - 1; k++)
newH.pos[k + 1] = h.pos[k];
newH.value[0] = x;
for (int k = 0; k < LZFSE_ENCODE_HASH_WIDTH - 1; k++)
newH.value[k + 1] = h.value[k];
}
// Do not look for a match if we are still covered by a previous match
if (pos < s->src_literal)
goto END_POS;
// Search best incoming match
lzfse_match incoming = {.pos = pos, .ref = 0, .length = 0};
// Check for matches. We consider matches of length >= 4 only.
for (int k = 0; k < LZFSE_ENCODE_HASH_WIDTH; k++) {
uint32_t d = h.value[k] ^ x;
if (d)
continue; // no 4 byte match
int32_t ref = h.pos[k];
if (ref + LZFSE_ENCODE_MAX_D_VALUE < pos)
continue; // too far
const uint8_t *src_ref = s->src + ref;
const uint8_t *src_pos = s->src + pos;
uint32_t length = 4;
uint32_t maxLength =
(uint32_t)(s->src_end - pos - 8); // ensure we don't hit the end of SRC
while (length < maxLength) {
uint64_t d = load8(src_ref + length) ^ load8(src_pos + length);
if (d == 0) {
length += 8;
continue;
}
length +=
(__builtin_ctzll(d) >> 3); // ctzll must be called only with D != 0
break;
}
if (length > incoming.length) {
incoming.length = length;
incoming.ref = ref;
} // keep if longer
}
// No incoming match?
if (incoming.length == 0) {
// We may still want to emit some literals here, to not lag too far behind
// the current search point, and avoid
// ending up with a literal block not fitting in the state.
lzfse_offset n_literals = pos - s->src_literal;
// The threshold here should be larger than a couple of MAX_L_VALUE, and
// much smaller than LITERALS_PER_BLOCK
if (n_literals > 8 * LZFSE_ENCODE_MAX_L_VALUE) {
// Here, we need to consume some literals. Emit pending match if there
// is one
if (s->pending.length > 0) {
if (lzfse_backend_match(s, &s->pending) != LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
s->pending = NO_MATCH;
} else {
// No pending match, emit a full LZFSE_ENCODE_MAX_L_VALUE block of
// literals
if (lzfse_backend_literals(s, LZFSE_ENCODE_MAX_L_VALUE) !=
LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
}
}
goto END_POS; // no incoming match
}
// Limit match length (it may still be expanded backwards, but this is
// bounded by the limit on literals we tested before)
if (incoming.length > LZFSE_ENCODE_MAX_MATCH_LENGTH) {
incoming.length = LZFSE_ENCODE_MAX_MATCH_LENGTH;
}
// Expand backwards (since this is expensive, we do this for the best match
// only)
while (incoming.pos > s->src_literal && incoming.ref > 0 &&
s->src[incoming.ref - 1] == s->src[incoming.pos - 1]) {
incoming.pos--;
incoming.ref--;
}
incoming.length += pos - incoming.pos; // update length after expansion
// Match filtering heuristic (from LZVN). INCOMING is always defined here.
// Incoming is 'good', emit incoming
if (incoming.length >= LZFSE_ENCODE_GOOD_MATCH) {
if (lzfse_backend_match(s, &incoming) != LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
s->pending = NO_MATCH;
goto END_POS;
}
// No pending, keep incoming
if (s->pending.length == 0) {
s->pending = incoming;
goto END_POS;
}
// No overlap, emit pending, keep incoming
if (s->pending.pos + s->pending.length <= incoming.pos) {
if (lzfse_backend_match(s, &s->pending) != LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
s->pending = incoming;
goto END_POS;
}
// Overlap: emit longest
if (incoming.length > s->pending.length) {
if (lzfse_backend_match(s, &incoming) != LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
} else {
if (lzfse_backend_match(s, &s->pending) != LZFSE_STATUS_OK) {
ok = 0;
goto END;
}
}
s->pending = NO_MATCH;
END_POS:
// We are done with this src_encode_i.
// Update state now (s->pending has already been updated).
*hashLine = newH;
}
END:
return ok ? LZFSE_STATUS_OK : LZFSE_STATUS_DST_FULL;
}
int lzfse_encode_finish(lzfse_encoder_state *s) {
const lzfse_match NO_MATCH = {0};
// Emit pending match
if (s->pending.length > 0) {
if (lzfse_backend_match(s, &s->pending) != LZFSE_STATUS_OK)
return LZFSE_STATUS_DST_FULL;
s->pending = NO_MATCH;
}
// Emit final literals if any
lzfse_offset L = s->src_end - s->src_literal;
if (L > 0) {
if (lzfse_backend_literals(s, L) != LZFSE_STATUS_OK)
return LZFSE_STATUS_DST_FULL;
}
// Emit all matches, and end-of-stream block
if (lzfse_backend_end_of_stream(s) != LZFSE_STATUS_OK)
return LZFSE_STATUS_DST_FULL;
return LZFSE_STATUS_OK;
}
|