1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
/*
Copyright (c) 2015-2016, Apple Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder(s) nor the names of any contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Finite state entropy coding (FSE)
// This is an implementation of the tANS algorithm described by Jarek Duda,
// we use the more descriptive name "Finite State Entropy".
#pragma once
#include <linux/types.h>
#include <linux/string.h>
// Select between 32/64-bit I/O streams for FSE. Note that the FSE stream
// size need not match the word size of the machine, but in practice you
// want to use 64b streams on 64b systems for better performance.
#if defined(_M_AMD64) || defined(__x86_64__) || defined(__arm64__)
#define FSE_IOSTREAM_64 1
#else
#define FSE_IOSTREAM_64 0
#endif
#if defined(_MSC_VER) && !defined(__clang__)
# define FSE_INLINE __forceinline
# define inline __inline
# pragma warning(disable : 4068) // warning C4068: unknown pragma
#else
# define FSE_INLINE static inline __attribute__((__always_inline__))
#endif
// MARK: - Bit utils
/*! @abstract Signed type used to represent bit count. */
typedef int32_t fse_bit_count;
/*! @abstract Unsigned type used to represent FSE state. */
typedef uint16_t fse_state;
// Mask the NBITS lsb of X. 0 <= NBITS < 64
static inline uint64_t fse_mask_lsb64(uint64_t x, fse_bit_count nbits) {
static const uint64_t mtable[65] = {
0x0000000000000000LLU, 0x0000000000000001LLU, 0x0000000000000003LLU,
0x0000000000000007LLU, 0x000000000000000fLLU, 0x000000000000001fLLU,
0x000000000000003fLLU, 0x000000000000007fLLU, 0x00000000000000ffLLU,
0x00000000000001ffLLU, 0x00000000000003ffLLU, 0x00000000000007ffLLU,
0x0000000000000fffLLU, 0x0000000000001fffLLU, 0x0000000000003fffLLU,
0x0000000000007fffLLU, 0x000000000000ffffLLU, 0x000000000001ffffLLU,
0x000000000003ffffLLU, 0x000000000007ffffLLU, 0x00000000000fffffLLU,
0x00000000001fffffLLU, 0x00000000003fffffLLU, 0x00000000007fffffLLU,
0x0000000000ffffffLLU, 0x0000000001ffffffLLU, 0x0000000003ffffffLLU,
0x0000000007ffffffLLU, 0x000000000fffffffLLU, 0x000000001fffffffLLU,
0x000000003fffffffLLU, 0x000000007fffffffLLU, 0x00000000ffffffffLLU,
0x00000001ffffffffLLU, 0x00000003ffffffffLLU, 0x00000007ffffffffLLU,
0x0000000fffffffffLLU, 0x0000001fffffffffLLU, 0x0000003fffffffffLLU,
0x0000007fffffffffLLU, 0x000000ffffffffffLLU, 0x000001ffffffffffLLU,
0x000003ffffffffffLLU, 0x000007ffffffffffLLU, 0x00000fffffffffffLLU,
0x00001fffffffffffLLU, 0x00003fffffffffffLLU, 0x00007fffffffffffLLU,
0x0000ffffffffffffLLU, 0x0001ffffffffffffLLU, 0x0003ffffffffffffLLU,
0x0007ffffffffffffLLU, 0x000fffffffffffffLLU, 0x001fffffffffffffLLU,
0x003fffffffffffffLLU, 0x007fffffffffffffLLU, 0x00ffffffffffffffLLU,
0x01ffffffffffffffLLU, 0x03ffffffffffffffLLU, 0x07ffffffffffffffLLU,
0x0fffffffffffffffLLU, 0x1fffffffffffffffLLU, 0x3fffffffffffffffLLU,
0x7fffffffffffffffLLU, 0xffffffffffffffffLLU,
};
return x & mtable[nbits];
}
// Mask the NBITS lsb of X. 0 <= NBITS < 32
static inline uint32_t fse_mask_lsb32(uint32_t x, fse_bit_count nbits) {
static const uint32_t mtable[33] = {
0x0000000000000000U, 0x0000000000000001U, 0x0000000000000003U,
0x0000000000000007U, 0x000000000000000fU, 0x000000000000001fU,
0x000000000000003fU, 0x000000000000007fU, 0x00000000000000ffU,
0x00000000000001ffU, 0x00000000000003ffU, 0x00000000000007ffU,
0x0000000000000fffU, 0x0000000000001fffU, 0x0000000000003fffU,
0x0000000000007fffU, 0x000000000000ffffU, 0x000000000001ffffU,
0x000000000003ffffU, 0x000000000007ffffU, 0x00000000000fffffU,
0x00000000001fffffU, 0x00000000003fffffU, 0x00000000007fffffU,
0x0000000000ffffffU, 0x0000000001ffffffU, 0x0000000003ffffffU,
0x0000000007ffffffU, 0x000000000fffffffU, 0x000000001fffffffU,
0x000000003fffffffU, 0x000000007fffffffU, 0x00000000ffffffffU,
};
return x & mtable[nbits];
}
/*! @abstract Select \c nbits at index \c start from \c x.
* 0 <= start <= start+nbits <= 64 */
FSE_INLINE uint64_t fse_extract_bits64(uint64_t x, fse_bit_count start,
fse_bit_count nbits) {
#if defined(__GNUC__)
// If START and NBITS are constants, map to bit-field extraction instructions
if (__builtin_constant_p(start) && __builtin_constant_p(nbits))
return (x >> start) & ((1LLU << nbits) - 1LLU);
#endif
// Otherwise, shift and mask
return fse_mask_lsb64(x >> start, nbits);
}
/*! @abstract Select \c nbits at index \c start from \c x.
* 0 <= start <= start+nbits <= 32 */
FSE_INLINE uint32_t fse_extract_bits32(uint32_t x, fse_bit_count start,
fse_bit_count nbits) {
#if defined(__GNUC__)
// If START and NBITS are constants, map to bit-field extraction instructions
if (__builtin_constant_p(start) && __builtin_constant_p(nbits))
return (x >> start) & ((1U << nbits) - 1U);
#endif
// Otherwise, shift and mask
return fse_mask_lsb32(x >> start, nbits);
}
// MARK: - Bit stream
// I/O streams
// The streams can be shared between several FSE encoders/decoders, which is why
// they are not in the state struct
/*! @abstract Output stream, 64-bit accum. */
typedef struct {
uint64_t accum; // Output bits
fse_bit_count accum_nbits; // Number of valid bits in ACCUM, other bits are 0
} fse_out_stream64;
/*! @abstract Output stream, 32-bit accum. */
typedef struct {
uint32_t accum; // Output bits
fse_bit_count accum_nbits; // Number of valid bits in ACCUM, other bits are 0
} fse_out_stream32;
/*! @abstract Object representing an input stream. */
typedef struct {
uint64_t accum; // Input bits
fse_bit_count accum_nbits; // Number of valid bits in ACCUM, other bits are 0
} fse_in_stream64;
/*! @abstract Object representing an input stream. */
typedef struct {
uint32_t accum; // Input bits
fse_bit_count accum_nbits; // Number of valid bits in ACCUM, other bits are 0
} fse_in_stream32;
/*! @abstract Initialize an output stream object. */
FSE_INLINE void fse_out_init64(fse_out_stream64 *s) {
s->accum = 0;
s->accum_nbits = 0;
}
/*! @abstract Initialize an output stream object. */
FSE_INLINE void fse_out_init32(fse_out_stream32 *s) {
s->accum = 0;
s->accum_nbits = 0;
}
/*! @abstract Write full bytes from the accumulator to output buffer, ensuring
* accum_nbits is in [0, 7].
* We assume we can write 8 bytes to the output buffer \c (*pbuf[0..7]) in all
* cases.
* @note *pbuf is incremented by the number of written bytes. */
FSE_INLINE void fse_out_flush64(fse_out_stream64 *s, uint8_t **pbuf) {
fse_bit_count nbits =
s->accum_nbits & -8; // number of bits written, multiple of 8
// Write 8 bytes of current accumulator
memcpy(*pbuf, &(s->accum), 8);
*pbuf += (nbits >> 3); // bytes
// Update state
s->accum >>= nbits; // remove nbits
s->accum_nbits -= nbits;
}
/*! @abstract Write full bytes from the accumulator to output buffer, ensuring
* accum_nbits is in [0, 7].
* We assume we can write 4 bytes to the output buffer \c (*pbuf[0..3]) in all
* cases.
* @note *pbuf is incremented by the number of written bytes. */
FSE_INLINE void fse_out_flush32(fse_out_stream32 *s, uint8_t **pbuf) {
fse_bit_count nbits =
s->accum_nbits & -8; // number of bits written, multiple of 8
// Write 4 bytes of current accumulator
memcpy(*pbuf, &(s->accum), 4);
*pbuf += (nbits >> 3); // bytes
// Update state
s->accum >>= nbits; // remove nbits
s->accum_nbits -= nbits;
}
/*! @abstract Write the last bytes from the accumulator to output buffer,
* ensuring accum_nbits is in [-7, 0]. Bits are padded with 0 if needed.
* We assume we can write 8 bytes to the output buffer \c (*pbuf[0..7]) in all
* cases.
* @note *pbuf is incremented by the number of written bytes. */
FSE_INLINE void fse_out_finish64(fse_out_stream64 *s, uint8_t **pbuf) {
fse_bit_count nbits =
(s->accum_nbits + 7) & -8; // number of bits written, multiple of 8
// Write 8 bytes of current accumulator
memcpy(*pbuf, &(s->accum), 8);
*pbuf += (nbits >> 3); // bytes
// Update state
s->accum = 0; // remove nbits
s->accum_nbits -= nbits;
}
/*! @abstract Write the last bytes from the accumulator to output buffer,
* ensuring accum_nbits is in [-7, 0]. Bits are padded with 0 if needed.
* We assume we can write 4 bytes to the output buffer \c (*pbuf[0..3]) in all
* cases.
* @note *pbuf is incremented by the number of written bytes. */
FSE_INLINE void fse_out_finish32(fse_out_stream32 *s, uint8_t **pbuf) {
fse_bit_count nbits =
(s->accum_nbits + 7) & -8; // number of bits written, multiple of 8
// Write 8 bytes of current accumulator
memcpy(*pbuf, &(s->accum), 4);
*pbuf += (nbits >> 3); // bytes
// Update state
s->accum = 0; // remove nbits
s->accum_nbits -= nbits;
}
/*! @abstract Accumulate \c n bits \c b to output stream \c s. We \b must have:
* 0 <= b < 2^n, and N + s->accum_nbits <= 64.
* @note The caller must ensure out_flush is called \b before the accumulator
* overflows to more than 64 bits. */
FSE_INLINE void fse_out_push64(fse_out_stream64 *s, fse_bit_count n,
uint64_t b) {
s->accum |= b << s->accum_nbits;
s->accum_nbits += n;
}
/*! @abstract Accumulate \c n bits \c b to output stream \c s. We \b must have:
* 0 <= n < 2^n, and n + s->accum_nbits <= 32.
* @note The caller must ensure out_flush is called \b before the accumulator
* overflows to more than 32 bits. */
FSE_INLINE void fse_out_push32(fse_out_stream32 *s, fse_bit_count n,
uint32_t b) {
s->accum |= b << s->accum_nbits;
s->accum_nbits += n;
}
#define DEBUG_CHECK_INPUT_STREAM_PARAMETERS
/*! @abstract Initialize the fse input stream so that accum holds between 56
* and 63 bits. We never want to have 64 bits in the stream, because that allows
* us to avoid a special case in the fse_in_pull function (eliminating an
* unpredictable branch), while not requiring any additional fse_flush
* operations. This is why we have the special case for n == 0 (in which case
* we want to load only 7 bytes instead of 8). */
FSE_INLINE int fse_in_checked_init64(fse_in_stream64 *s, fse_bit_count n,
const uint8_t **pbuf,
const uint8_t *buf_start) {
if (n) {
if (*pbuf < buf_start + 8)
return -1; // out of range
*pbuf -= 8;
memcpy(&(s->accum), *pbuf, 8);
s->accum_nbits = n + 64;
} else {
if (*pbuf < buf_start + 7)
return -1; // out of range
*pbuf -= 7;
memcpy(&(s->accum), *pbuf, 7);
s->accum &= 0xffffffffffffff;
s->accum_nbits = n + 56;
}
if ((s->accum_nbits < 56 || s->accum_nbits >= 64) ||
((s->accum >> s->accum_nbits) != 0)) {
return -1; // the incoming input is wrong (encoder should have zeroed the
// upper bits)
}
return 0; // OK
}
/*! @abstract Identical to previous function, but for 32-bit operation
* (resulting bit count is between 24 and 31 bits). */
FSE_INLINE int fse_in_checked_init32(fse_in_stream32 *s, fse_bit_count n,
const uint8_t **pbuf,
const uint8_t *buf_start) {
if (n) {
if (*pbuf < buf_start + 4)
return -1; // out of range
*pbuf -= 4;
memcpy(&(s->accum), *pbuf, 4);
s->accum_nbits = n + 32;
} else {
if (*pbuf < buf_start + 3)
return -1; // out of range
*pbuf -= 3;
memcpy(&(s->accum), *pbuf, 3);
s->accum &= 0xffffff;
s->accum_nbits = n + 24;
}
if ((s->accum_nbits < 24 || s->accum_nbits >= 32) ||
((s->accum >> s->accum_nbits) != 0)) {
return -1; // the incoming input is wrong (encoder should have zeroed the
// upper bits)
}
return 0; // OK
}
/*! @abstract Read in new bytes from buffer to ensure that we have a full
* complement of bits in the stream object (again, between 56 and 63 bits).
* checking the new value of \c *pbuf remains >= \c buf_start.
* @return 0 if OK.
* @return -1 on failure. */
FSE_INLINE int fse_in_checked_flush64(fse_in_stream64 *s, const uint8_t **pbuf,
const uint8_t *buf_start) {
// Get number of bits to add to bring us into the desired range.
fse_bit_count nbits = (63 - s->accum_nbits) & -8;
// Convert bits to bytes and decrement buffer address, then load new data.
const uint8_t *buf = (*pbuf) - (nbits >> 3);
uint64_t incoming;
if (buf < buf_start) {
return -1; // out of range
}
*pbuf = buf;
memcpy(&incoming, buf, 8);
// Update the state object and verify its validity (in DEBUG).
s->accum = (s->accum << nbits) | fse_mask_lsb64(incoming, nbits);
s->accum_nbits += nbits;
DEBUG_CHECK_INPUT_STREAM_PARAMETERS
return 0; // OK
}
/*! @abstract Identical to previous function (but again, we're only filling
* a 32-bit field with between 24 and 31 bits). */
FSE_INLINE int fse_in_checked_flush32(fse_in_stream32 *s, const uint8_t **pbuf,
const uint8_t *buf_start) {
// Get number of bits to add to bring us into the desired range.
fse_bit_count nbits = (31 - s->accum_nbits) & -8;
if (nbits > 0) {
// Convert bits to bytes and decrement buffer address, then load new data.
const uint8_t *buf = (*pbuf) - (nbits >> 3);
uint32_t incoming;
if (buf < buf_start) {
return -1; // out of range
}
*pbuf = buf;
incoming = *((uint32_t *)buf);
// Update the state object and verify its validity (in DEBUG).
s->accum = (s->accum << nbits) | fse_mask_lsb32(incoming, nbits);
s->accum_nbits += nbits;
}
DEBUG_CHECK_INPUT_STREAM_PARAMETERS
return 0; // OK
}
/*! @abstract Pull n bits out of the fse stream object. */
FSE_INLINE uint64_t fse_in_pull64(fse_in_stream64 *s, fse_bit_count n) {
uint64_t result;
s->accum_nbits -= n;
result = s->accum >> s->accum_nbits;
s->accum = fse_mask_lsb64(s->accum, s->accum_nbits);
return result;
}
/*! @abstract Pull n bits out of the fse stream object. */
FSE_INLINE uint32_t fse_in_pull32(fse_in_stream32 *s, fse_bit_count n) {
uint32_t result;
s->accum_nbits -= n;
result = s->accum >> s->accum_nbits;
s->accum = fse_mask_lsb32(s->accum, s->accum_nbits);
return result;
}
// MARK: - Encode/Decode
// Map to 32/64-bit implementations and types for I/O
#if FSE_IOSTREAM_64
typedef uint64_t fse_bits;
typedef fse_out_stream64 fse_out_stream;
typedef fse_in_stream64 fse_in_stream;
#define fse_mask_lsb fse_mask_lsb64
#define fse_extract_bits fse_extract_bits64
#define fse_out_init fse_out_init64
#define fse_out_flush fse_out_flush64
#define fse_out_finish fse_out_finish64
#define fse_out_push fse_out_push64
#define fse_in_init fse_in_checked_init64
#define fse_in_checked_init fse_in_checked_init64
#define fse_in_flush fse_in_checked_flush64
#define fse_in_checked_flush fse_in_checked_flush64
#define fse_in_flush2(_unused, _parameters, _unused2) 0 /* nothing */
#define fse_in_checked_flush2(_unused, _parameters) /* nothing */
#define fse_in_pull fse_in_pull64
#else
typedef uint32_t fse_bits;
typedef fse_out_stream32 fse_out_stream;
typedef fse_in_stream32 fse_in_stream;
#define fse_mask_lsb fse_mask_lsb32
#define fse_extract_bits fse_extract_bits32
#define fse_out_init fse_out_init32
#define fse_out_flush fse_out_flush32
#define fse_out_finish fse_out_finish32
#define fse_out_push fse_out_push32
#define fse_in_init fse_in_checked_init32
#define fse_in_checked_init fse_in_checked_init32
#define fse_in_flush fse_in_checked_flush32
#define fse_in_checked_flush fse_in_checked_flush32
#define fse_in_flush2 fse_in_checked_flush32
#define fse_in_checked_flush2 fse_in_checked_flush32
#define fse_in_pull fse_in_pull32
#endif
/*! @abstract Entry for one symbol in the encoder table (64b). */
typedef struct {
int16_t s0; // First state requiring a K-bit shift
int16_t k; // States S >= S0 are shifted K bits. States S < S0 are
// shifted K-1 bits
int16_t delta0; // Relative increment used to compute next state if S >= S0
int16_t delta1; // Relative increment used to compute next state if S < S0
} fse_encoder_entry;
/*! @abstract Entry for one state in the decoder table (32b). */
typedef struct { // DO NOT REORDER THE FIELDS
int8_t k; // Number of bits to read
uint8_t symbol; // Emitted symbol
int16_t delta; // Signed increment used to compute next state (+bias)
} fse_decoder_entry;
/*! @abstract Entry for one state in the value decoder table (64b). */
typedef struct { // DO NOT REORDER THE FIELDS
uint8_t total_bits; // state bits + extra value bits = shift for next decode
uint8_t value_bits; // extra value bits
int16_t delta; // state base (delta)
int32_t vbase; // value base
} fse_value_decoder_entry;
/*! @abstract Encode SYMBOL using the encoder table, and update \c *pstate,
* \c out.
* @note The caller must ensure we have enough bits available in the output
* stream accumulator. */
FSE_INLINE void fse_encode(fse_state *__restrict pstate,
const fse_encoder_entry *__restrict encoder_table,
fse_out_stream *__restrict out, uint8_t symbol) {
int s = *pstate;
fse_encoder_entry e = encoder_table[symbol];
int s0 = e.s0;
int k = e.k;
int delta0 = e.delta0;
int delta1 = e.delta1;
// Number of bits to write
int hi = s >= s0;
fse_bit_count nbits = hi ? k : (k - 1);
fse_state delta = hi ? delta0 : delta1;
// Write lower NBITS of state
fse_bits b = fse_mask_lsb(s, nbits);
fse_out_push(out, nbits, b);
// Update state with remaining bits and delta
*pstate = delta + (s >> nbits);
}
/*! @abstract Decode and return symbol using the decoder table, and update
* \c *pstate, \c in.
* @note The caller must ensure we have enough bits available in the input
* stream accumulator. */
FSE_INLINE uint8_t fse_decode(fse_state *__restrict pstate,
const int32_t *__restrict decoder_table,
fse_in_stream *__restrict in) {
int32_t e = decoder_table[*pstate];
// Update state from K bits of input + DELTA
*pstate = (fse_state)(e >> 16) + (fse_state)fse_in_pull(in, e & 0xff);
// Return the symbol for this state
return fse_extract_bits(e, 8, 8); // symbol
}
/*! @abstract Decode and return value using the decoder table, and update \c
* *pstate, \c in.
* \c value_decoder_table[nstates]
* @note The caller must ensure we have enough bits available in the input
* stream accumulator. */
FSE_INLINE int32_t
fse_value_decode(fse_state *__restrict pstate,
const fse_value_decoder_entry *value_decoder_table,
fse_in_stream *__restrict in) {
fse_value_decoder_entry entry = value_decoder_table[*pstate];
uint32_t state_and_value_bits = (uint32_t)fse_in_pull(in, entry.total_bits);
*pstate =
(fse_state)(entry.delta + (state_and_value_bits >> entry.value_bits));
return (int32_t)(entry.vbase +
fse_mask_lsb(state_and_value_bits, entry.value_bits));
}
// MARK: - Tables
// IMPORTANT: To properly decode an FSE encoded stream, both encoder/decoder
// tables shall be initialized with the same parameters, including the
// FREQ[NSYMBOL] array.
//
/*! @abstract Sanity check on frequency table, verify sum of \c freq
* is <= \c number_of_states. */
FSE_INLINE int fse_check_freq(const uint16_t *freq_table,
const size_t table_size,
const size_t number_of_states) {
size_t sum_of_freq = 0;
int i;
for (i = 0; i < table_size; i++) {
sum_of_freq += freq_table[i];
}
return (sum_of_freq > number_of_states) ? -1 : 0;
}
/*! @abstract Initialize encoder table \c t[nsymbols].
*
* @param nstates
* sum \c freq[i]; the number of states (a power of 2).
*
* @param nsymbols
* the number of symbols.
*
* @param freq[nsymbols]
* is a normalized histogram of symbol frequencies, with \c freq[i] >= 0.
* Some symbols may have a 0 frequency. In that case they should not be
* present in the data.
*/
void fse_init_encoder_table(int nstates, int nsymbols,
const uint16_t *__restrict freq,
fse_encoder_entry *__restrict t);
/*! @abstract Initialize decoder table \c t[nstates].
*
* @param nstates
* sum \c freq[i]; the number of states (a power of 2).
*
* @param nsymbols
* the number of symbols.
*
* @param feq[nsymbols]
* a normalized histogram of symbol frequencies, with \c freq[i] >= 0.
* Some symbols may have a 0 frequency. In that case they should not be
* present in the data.
*
* @return 0 if OK.
* @return -1 on failure.
*/
int fse_init_decoder_table(int nstates, int nsymbols,
const uint16_t *__restrict freq,
int32_t *__restrict t);
/*! @abstract Initialize value decoder table \c t[nstates].
*
* @param nstates
* sum \cfreq[i]; the number of states (a power of 2).
*
* @param nsymbols
* the number of symbols.
*
* @param freq[nsymbols]
* a normalized histogram of symbol frequencies, with \c freq[i] >= 0.
* \c symbol_vbits[nsymbols] and \c symbol_vbase[nsymbols] are the number of
* value bits to read and the base value for each symbol.
* Some symbols may have a 0 frequency. In that case they should not be
* present in the data.
*/
void fse_init_value_decoder_table(int nstates, int nsymbols,
const uint16_t *__restrict freq,
const uint8_t *__restrict symbol_vbits,
const int32_t *__restrict symbol_vbase,
fse_value_decoder_entry *__restrict t);
/*! @abstract Normalize a table \c t[nsymbols] of occurrences to
* \c freq[nsymbols]. */
void fse_normalize_freq(int nstates, int nsymbols, const uint32_t *__restrict t,
uint16_t *__restrict freq);
|