1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2018 Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
*/
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include "apfs.h"
/**
* apfs_node_is_valid - Check basic sanity of the node index
* @sb: filesystem superblock
* @node: node to check
*
* Verifies that the node index fits in a single block, and that the number
* of records fits in the index. Without this check a crafted filesystem could
* pretend to have too many records, and calls to apfs_node_locate_key() and
* apfs_node_locate_value() would read beyond the limits of the node.
*/
static bool apfs_node_is_valid(struct super_block *sb,
struct apfs_node *node)
{
u32 records = node->records;
int index_size = node->key - sizeof(struct apfs_btree_node_phys);
int entry_size;
if (node->key > sb->s_blocksize)
return false;
entry_size = (apfs_node_has_fixed_kv_size(node)) ?
sizeof(struct apfs_kvoff) : sizeof(struct apfs_kvloc);
/* Coarse bound to prevent multiplication overflow in final check */
if (records > 1 << 16)
return false;
return records * entry_size <= index_size;
}
void apfs_node_free(struct apfs_node *node)
{
struct apfs_object *obj = NULL;
if (!node)
return;
obj = &node->object;
if (obj->o_bh) {
brelse(obj->o_bh);
obj->o_bh = NULL;
} else if (!obj->ephemeral) {
/* Ephemeral data always remains in memory */
kfree(obj->data);
}
obj->data = NULL;
kfree(node);
}
/**
* apfs_read_node - Read a node header from disk
* @sb: filesystem superblock
* @oid: object id for the node
* @storage: storage type for the node object
* @write: request write access?
*
* Returns ERR_PTR in case of failure, otherwise return a pointer to the
* resulting apfs_node structure with the initial reference taken.
*
* For now we assume the node has not been read before.
*/
struct apfs_node *apfs_read_node(struct super_block *sb, u64 oid, u32 storage,
bool write)
{
struct apfs_sb_info *sbi = APFS_SB(sb);
struct apfs_nxsb_info *nxi = APFS_NXI(sb);
struct buffer_head *bh = NULL;
struct apfs_ephemeral_object_info *eph_info = NULL;
struct apfs_btree_node_phys *raw = NULL;
struct apfs_node *node = NULL;
struct apfs_nloc *free_head = NULL;
u64 bno;
int err;
switch (storage) {
case APFS_OBJ_VIRTUAL:
/* All virtual nodes are inside a volume, at least for now */
err = apfs_omap_lookup_block(sb, sbi->s_omap, oid, &bno, write);
if (err) {
apfs_err(sb, "omap lookup failed for oid 0x%llx", oid);
return ERR_PTR(err);
}
/* CoW has already been done, don't worry about snapshots */
bh = apfs_read_object_block(sb, bno, write, false /* preserve */);
if (IS_ERR(bh)) {
apfs_err(sb, "object read failed for bno 0x%llx", bno);
return (void *)bh;
}
bno = bh->b_blocknr;
raw = (struct apfs_btree_node_phys *)bh->b_data;
break;
case APFS_OBJ_PHYSICAL:
bh = apfs_read_object_block(sb, oid, write, false /* preserve */);
if (IS_ERR(bh)) {
apfs_err(sb, "object read failed for bno 0x%llx", oid);
return (void *)bh;
}
bno = oid = bh->b_blocknr;
raw = (struct apfs_btree_node_phys *)bh->b_data;
break;
case APFS_OBJ_EPHEMERAL:
/* Ephemeral objects are already in memory */
eph_info = apfs_ephemeral_object_lookup(sb, oid);
if (IS_ERR(eph_info)) {
apfs_err(sb, "no ephemeral node for oid 0x%llx", oid);
return (void *)eph_info;
}
if (eph_info->size != sb->s_blocksize) {
apfs_err(sb, "unsupported size for ephemeral node (%u)", eph_info->size);
return ERR_PTR(-EOPNOTSUPP);
}
bno = 0; /* In memory, so meaningless */
raw = eph_info->object;
/* Only for consistency, will happen again on commit */
if (write)
raw->btn_o.o_xid = cpu_to_le64(nxi->nx_xid);
break;
default:
apfs_alert(sb, "invalid storage type %u - bug!", storage);
return ERR_PTR(-EINVAL);
}
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
brelse(bh);
return ERR_PTR(-ENOMEM);
}
node->tree_type = le32_to_cpu(raw->btn_o.o_subtype);
node->flags = le16_to_cpu(raw->btn_flags);
node->records = le32_to_cpu(raw->btn_nkeys);
node->key = sizeof(*raw) + le16_to_cpu(raw->btn_table_space.off)
+ le16_to_cpu(raw->btn_table_space.len);
node->free = node->key + le16_to_cpu(raw->btn_free_space.off);
node->val = node->free + le16_to_cpu(raw->btn_free_space.len);
free_head = &raw->btn_key_free_list;
node->key_free_list_len = le16_to_cpu(free_head->len);
free_head = &raw->btn_val_free_list;
node->val_free_list_len = le16_to_cpu(free_head->len);
node->object.sb = sb;
node->object.block_nr = bno;
node->object.oid = oid;
node->object.o_bh = bh;
node->object.data = (char *)raw;
node->object.ephemeral = !bh;
/* Ephemeral objects already got checked on mount */
if (!node->object.ephemeral && nxi->nx_flags & APFS_CHECK_NODES && !apfs_obj_verify_csum(sb, bh)) {
/* TODO: don't check this twice for virtual/physical objects */
apfs_err(sb, "bad checksum for node in block 0x%llx", (unsigned long long)bno);
apfs_node_free(node);
return ERR_PTR(-EFSBADCRC);
}
if (!apfs_node_is_valid(sb, node)) {
apfs_err(sb, "bad node in block 0x%llx", (unsigned long long)bno);
apfs_node_free(node);
return ERR_PTR(-EFSCORRUPTED);
}
return node;
}
/**
* apfs_node_min_table_size - Return the minimum size for a node's toc
* @sb: superblock structure
* @type: tree type for the node
* @flags: flags for the node
*/
static int apfs_node_min_table_size(struct super_block *sb, u32 type, u16 flags)
{
bool leaf = flags & APFS_BTNODE_LEAF;
int key_size, val_size, toc_size;
int space, count;
/* Preallocate the whole table for trees with fixed key/value sizes */
switch (type) {
case APFS_OBJECT_TYPE_OMAP:
key_size = sizeof(struct apfs_omap_key);
val_size = leaf ? sizeof(struct apfs_omap_val) : sizeof(__le64);
toc_size = sizeof(struct apfs_kvoff);
break;
case APFS_OBJECT_TYPE_SPACEMAN_FREE_QUEUE:
key_size = sizeof(struct apfs_spaceman_free_queue_key);
val_size = sizeof(__le64); /* We assume no ghosts here */
toc_size = sizeof(struct apfs_kvoff);
break;
case APFS_OBJECT_TYPE_OMAP_SNAPSHOT:
key_size = sizeof(__le64);
val_size = leaf ? sizeof(struct apfs_omap_snapshot) : sizeof(__le64);
toc_size = sizeof(struct apfs_kvoff);
break;
case APFS_OBJECT_TYPE_FEXT_TREE:
key_size = sizeof(struct apfs_fext_tree_key);
val_size = leaf ? sizeof(struct apfs_fext_tree_val) : sizeof(__le64);
toc_size = sizeof(struct apfs_kvoff);
break;
default:
/* Make room for one record at least */
toc_size = sizeof(struct apfs_kvloc);
return APFS_BTREE_TOC_ENTRY_INCREMENT * toc_size;
}
/* The footer of root nodes is ignored for some reason */
space = sb->s_blocksize - sizeof(struct apfs_btree_node_phys);
count = space / (key_size + val_size + toc_size);
return count * toc_size;
}
/**
* apfs_set_empty_btree_info - Set the info footer for an empty b-tree node
* @sb: filesystem superblock
* @info: pointer to the on-disk info footer
* @subtype: subtype of the root node, i.e., tree type
*
* For now only supports the extent reference tree.
*/
static void apfs_set_empty_btree_info(struct super_block *sb, struct apfs_btree_info *info, u32 subtype)
{
u32 flags;
ASSERT(subtype == APFS_OBJECT_TYPE_BLOCKREFTREE || subtype == APFS_OBJECT_TYPE_OMAP_SNAPSHOT);
memset(info, 0, sizeof(*info));
flags = APFS_BTREE_PHYSICAL;
if (subtype == APFS_OBJECT_TYPE_BLOCKREFTREE)
flags |= APFS_BTREE_KV_NONALIGNED;
info->bt_fixed.bt_flags = cpu_to_le32(flags);
info->bt_fixed.bt_node_size = cpu_to_le32(sb->s_blocksize);
info->bt_key_count = 0;
info->bt_node_count = cpu_to_le64(1); /* Only one node: the root */
if (subtype == APFS_OBJECT_TYPE_BLOCKREFTREE)
return;
info->bt_fixed.bt_key_size = cpu_to_le32(8);
info->bt_longest_key = info->bt_fixed.bt_key_size;
info->bt_fixed.bt_val_size = cpu_to_le32(sizeof(struct apfs_omap_snapshot));
info->bt_longest_val = info->bt_fixed.bt_val_size;
}
/**
* apfs_make_empty_btree_root - Make an empty root for a b-tree
* @sb: filesystem superblock
* @subtype: subtype of the root node, i.e., tree type
* @oid: on return, the root's object id
*
* For now only supports the extent reference tree and an omap's snapshot tree.
* Returns 0 on success or a negative error code in case of failure.
*/
int apfs_make_empty_btree_root(struct super_block *sb, u32 subtype, u64 *oid)
{
struct apfs_superblock *vsb_raw = APFS_SB(sb)->s_vsb_raw;
struct apfs_btree_node_phys *root = NULL;
struct buffer_head *bh = NULL;
u64 bno;
u16 flags;
int toc_len, free_len, head_len, info_len;
int err;
ASSERT(subtype == APFS_OBJECT_TYPE_BLOCKREFTREE || subtype == APFS_OBJECT_TYPE_OMAP_SNAPSHOT);
err = apfs_spaceman_allocate_block(sb, &bno, true /* backwards */);
if (err) {
apfs_err(sb, "block allocation failed");
return err;
}
apfs_assert_in_transaction(sb, &vsb_raw->apfs_o);
le64_add_cpu(&vsb_raw->apfs_fs_alloc_count, 1);
le64_add_cpu(&vsb_raw->apfs_total_blocks_alloced, 1);
bh = apfs_getblk(sb, bno);
if (!bh)
return -EIO;
root = (void *)bh->b_data;
err = apfs_transaction_join(sb, bh);
if (err)
goto fail;
set_buffer_csum(bh);
flags = APFS_BTNODE_ROOT | APFS_BTNODE_LEAF;
if (subtype == APFS_OBJECT_TYPE_OMAP_SNAPSHOT)
flags |= APFS_BTNODE_FIXED_KV_SIZE;
root->btn_flags = cpu_to_le16(flags);
toc_len = apfs_node_min_table_size(sb, subtype, flags);
head_len = sizeof(*root);
info_len = sizeof(struct apfs_btree_info);
free_len = sb->s_blocksize - head_len - toc_len - info_len;
root->btn_level = 0; /* Root */
/* No keys and no values, so this is straightforward */
root->btn_nkeys = 0;
root->btn_table_space.off = 0;
root->btn_table_space.len = cpu_to_le16(toc_len);
root->btn_free_space.off = 0;
root->btn_free_space.len = cpu_to_le16(free_len);
/* No fragmentation */
root->btn_key_free_list.off = cpu_to_le16(APFS_BTOFF_INVALID);
root->btn_key_free_list.len = 0;
root->btn_val_free_list.off = cpu_to_le16(APFS_BTOFF_INVALID);
root->btn_val_free_list.len = 0;
apfs_set_empty_btree_info(sb, (void *)root + sb->s_blocksize - info_len, subtype);
root->btn_o.o_oid = cpu_to_le64(bno);
root->btn_o.o_xid = cpu_to_le64(APFS_NXI(sb)->nx_xid);
root->btn_o.o_type = cpu_to_le32(APFS_OBJECT_TYPE_BTREE | APFS_OBJ_PHYSICAL);
root->btn_o.o_subtype = cpu_to_le32(subtype);
*oid = bno;
err = 0;
fail:
root = NULL;
brelse(bh);
bh = NULL;
return err;
}
/**
* apfs_create_node - Allocates a new nonroot b-tree node on disk
* @sb: filesystem superblock
* @storage: storage type for the node object
*
* On success returns a pointer to the new in-memory node structure; the object
* header is initialized, and the node fields are given reasonable defaults.
* On failure, returns an error pointer.
*/
static struct apfs_node *apfs_create_node(struct super_block *sb, u32 storage)
{
struct apfs_sb_info *sbi = APFS_SB(sb);
struct apfs_nxsb_info *nxi = APFS_NXI(sb);
struct apfs_nx_superblock *msb_raw = nxi->nx_raw;
struct apfs_superblock *vsb_raw = sbi->s_vsb_raw;
struct apfs_ephemeral_object_info *eph_info = NULL;
struct apfs_node *node = NULL;
struct buffer_head *bh = NULL;
struct apfs_btree_node_phys *raw = NULL;
u64 bno, oid;
int err;
switch (storage) {
case APFS_OBJ_VIRTUAL:
err = apfs_spaceman_allocate_block(sb, &bno, true /* backwards */);
if (err) {
apfs_err(sb, "block allocation failed");
return ERR_PTR(err);
}
apfs_assert_in_transaction(sb, &vsb_raw->apfs_o);
le64_add_cpu(&vsb_raw->apfs_fs_alloc_count, 1);
le64_add_cpu(&vsb_raw->apfs_total_blocks_alloced, 1);
oid = le64_to_cpu(msb_raw->nx_next_oid);
le64_add_cpu(&msb_raw->nx_next_oid, 1);
err = apfs_create_omap_rec(sb, oid, bno);
if (err) {
apfs_err(sb, "omap rec creation failed (0x%llx-0x%llx)", oid, bno);
return ERR_PTR(err);
}
break;
case APFS_OBJ_PHYSICAL:
err = apfs_spaceman_allocate_block(sb, &bno, true /* backwards */);
if (err) {
apfs_err(sb, "block allocation failed");
return ERR_PTR(err);
}
/* We don't write to the container's omap */
apfs_assert_in_transaction(sb, &vsb_raw->apfs_o);
le64_add_cpu(&vsb_raw->apfs_fs_alloc_count, 1);
le64_add_cpu(&vsb_raw->apfs_total_blocks_alloced, 1);
oid = bno;
break;
case APFS_OBJ_EPHEMERAL:
if (nxi->nx_eph_count >= APFS_EPHEMERAL_LIST_LIMIT) {
apfs_err(sb, "creating too many ephemeral objects?");
return ERR_PTR(-EOPNOTSUPP);
}
eph_info = &nxi->nx_eph_list[nxi->nx_eph_count++];
eph_info->object = kzalloc(sb->s_blocksize, GFP_KERNEL);
if (!eph_info->object)
return ERR_PTR(-ENOMEM);
eph_info->size = sb->s_blocksize;
oid = eph_info->oid = le64_to_cpu(msb_raw->nx_next_oid);
le64_add_cpu(&msb_raw->nx_next_oid, 1);
break;
default:
apfs_alert(sb, "invalid storage type %u - bug!", storage);
return ERR_PTR(-EINVAL);
}
if (storage == APFS_OBJ_EPHEMERAL) {
bh = NULL;
bno = 0;
raw = eph_info->object;
} else {
bh = apfs_getblk(sb, bno);
if (!bh)
return ERR_PTR(-EIO);
bno = bh->b_blocknr;
raw = (void *)bh->b_data;
err = apfs_transaction_join(sb, bh);
if (err)
goto fail;
set_buffer_csum(bh);
}
/* Set most of the object header, but the subtype is up to the caller */
raw->btn_o.o_oid = cpu_to_le64(oid);
raw->btn_o.o_xid = cpu_to_le64(nxi->nx_xid);
raw->btn_o.o_type = cpu_to_le32(storage | APFS_OBJECT_TYPE_BTREE_NODE);
raw->btn_o.o_subtype = 0;
/* The caller is expected to change most node fields */
raw->btn_flags = 0;
raw->btn_level = 0;
raw->btn_nkeys = 0;
raw->btn_table_space.off = 0; /* Put the toc right after the header */
raw->btn_table_space.len = 0;
raw->btn_free_space.off = 0;
raw->btn_free_space.len = cpu_to_le16(sb->s_blocksize - sizeof(*raw));
raw->btn_key_free_list.off = cpu_to_le16(APFS_BTOFF_INVALID);
raw->btn_key_free_list.len = 0;
raw->btn_val_free_list.off = cpu_to_le16(APFS_BTOFF_INVALID);
raw->btn_val_free_list.len = 0;
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (!node) {
err = -ENOMEM;
goto fail;
}
node->object.sb = sb;
node->object.block_nr = bno;
node->object.oid = oid;
node->object.o_bh = bh;
node->object.data = (char *)raw;
node->object.ephemeral = !bh;
return node;
fail:
if (storage == APFS_OBJ_EPHEMERAL)
kfree(raw);
else
brelse(bh);
raw = NULL;
bh = NULL;
return ERR_PTR(err);
}
/**
* apfs_delete_node - Deletes a nonroot node from disk
* @node: node to delete
* @type: tree type for the query that found the node
*
* Does nothing to the in-memory node structure. Returns 0 on success, or a
* negative error code in case of failure.
*/
int apfs_delete_node(struct apfs_node *node, int type)
{
struct super_block *sb = node->object.sb;
struct apfs_nxsb_info *nxi = APFS_NXI(sb);
struct apfs_superblock *vsb_raw;
u64 oid = node->object.oid;
u64 bno = node->object.block_nr;
struct apfs_ephemeral_object_info *eph_info = NULL, *eph_info_end = NULL;
int err;
switch (type) {
case APFS_QUERY_CAT:
err = apfs_free_queue_insert(sb, bno, 1);
if (err) {
apfs_err(sb, "free queue insertion failed for 0x%llx", bno);
return err;
}
err = apfs_delete_omap_rec(sb, oid);
if (err) {
apfs_err(sb, "omap rec deletion failed (0x%llx)", oid);
return err;
}
vsb_raw = APFS_SB(sb)->s_vsb_raw;
apfs_assert_in_transaction(sb, &vsb_raw->apfs_o);
le64_add_cpu(&vsb_raw->apfs_fs_alloc_count, -1);
le64_add_cpu(&vsb_raw->apfs_total_blocks_freed, 1);
return 0;
case APFS_QUERY_OMAP:
case APFS_QUERY_EXTENTREF:
case APFS_QUERY_SNAP_META:
err = apfs_free_queue_insert(sb, bno, 1);
if (err) {
apfs_err(sb, "free queue insertion failed for 0x%llx", bno);
return err;
}
/* We don't write to the container's omap */
vsb_raw = APFS_SB(sb)->s_vsb_raw;
apfs_assert_in_transaction(sb, &vsb_raw->apfs_o);
le64_add_cpu(&vsb_raw->apfs_fs_alloc_count, -1);
le64_add_cpu(&vsb_raw->apfs_total_blocks_freed, 1);
return 0;
case APFS_QUERY_FREE_QUEUE:
eph_info_end = &nxi->nx_eph_list[nxi->nx_eph_count];
eph_info = apfs_ephemeral_object_lookup(sb, node->object.oid);
if (IS_ERR(eph_info)) {
apfs_alert(sb, "can't find ephemeral object to delete");
return PTR_ERR(eph_info);
}
kfree(eph_info->object);
eph_info->object = NULL;
memmove(eph_info, eph_info + 1, (char *)eph_info_end - (char *)(eph_info + 1));
eph_info_end->object = NULL;
--nxi->nx_eph_count;
return 0;
default:
apfs_alert(sb, "new query type must implement node deletion (%d)", type);
return -EOPNOTSUPP;
}
}
/**
* apfs_update_node - Update an existing node header
* @node: the modified in-memory node
*/
void apfs_update_node(struct apfs_node *node)
{
struct super_block *sb = node->object.sb;
struct buffer_head *bh = node->object.o_bh;
struct apfs_btree_node_phys *raw = (void *)node->object.data;
struct apfs_nloc *free_head;
u32 tflags, type;
int toc_off;
apfs_assert_in_transaction(sb, &raw->btn_o);
raw->btn_o.o_oid = cpu_to_le64(node->object.oid);
/* The node may no longer be a root, so update the object type */
tflags = le32_to_cpu(raw->btn_o.o_type) & APFS_OBJECT_TYPE_FLAGS_MASK;
type = (node->flags & APFS_BTNODE_ROOT) ? APFS_OBJECT_TYPE_BTREE :
APFS_OBJECT_TYPE_BTREE_NODE;
raw->btn_o.o_type = cpu_to_le32(type | tflags);
raw->btn_o.o_subtype = cpu_to_le32(node->tree_type);
raw->btn_flags = cpu_to_le16(node->flags);
raw->btn_nkeys = cpu_to_le32(node->records);
toc_off = sizeof(*raw) + le16_to_cpu(raw->btn_table_space.off);
raw->btn_table_space.len = cpu_to_le16(node->key - toc_off);
raw->btn_free_space.off = cpu_to_le16(node->free - node->key);
raw->btn_free_space.len = cpu_to_le16(node->val - node->free);
/* Reset the lists on zero length, a defragmentation is taking place */
free_head = &raw->btn_key_free_list;
free_head->len = cpu_to_le16(node->key_free_list_len);
if (!free_head->len)
free_head->off = cpu_to_le16(APFS_BTOFF_INVALID);
free_head = &raw->btn_val_free_list;
free_head->len = cpu_to_le16(node->val_free_list_len);
if (!free_head->len)
free_head->off = cpu_to_le16(APFS_BTOFF_INVALID);
if (bh) {
ASSERT(buffer_trans(bh));
ASSERT(buffer_csum(bh));
}
}
/**
* apfs_node_locate_key - Locate the key of a node record
* @node: node to be searched
* @index: number of the entry to locate
* @off: on return will hold the offset in the block
*
* Returns the length of the key, or 0 in case of failure. The function checks
* that this length fits within the block; callers must use it to make sure
* they never operate outside its bounds.
*/
int apfs_node_locate_key(struct apfs_node *node, int index, int *off)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *raw;
int len;
if (index >= node->records) {
apfs_err(sb, "index out of bounds (%d of %d)", index, node->records);
return 0;
}
raw = (struct apfs_btree_node_phys *)node->object.data;
if (apfs_node_has_fixed_kv_size(node)) {
struct apfs_kvoff *entry;
entry = (struct apfs_kvoff *)raw->btn_data + index;
/* TODO: it would be cleaner to read this stuff from disk */
if (node->tree_type == APFS_OBJECT_TYPE_OMAP_SNAPSHOT)
len = 8;
else
len = 16;
/* Translate offset in key area to offset in block */
*off = node->key + le16_to_cpu(entry->k);
} else {
/* These node types have variable length keys and values */
struct apfs_kvloc *entry;
entry = (struct apfs_kvloc *)raw->btn_data + index;
len = le16_to_cpu(entry->k.len);
/* Translate offset in key area to offset in block */
*off = node->key + le16_to_cpu(entry->k.off);
}
if (*off + len > sb->s_blocksize) {
apfs_err(sb, "key out of bounds (%d-%d)", *off, len);
return 0;
}
return len;
}
/**
* apfs_node_locate_value - Locate the value of a node record
* @node: node to be searched
* @index: number of the entry to locate
* @off: on return will hold the offset in the block
*
* Returns the length of the value, which may be 0 in case of corruption or if
* the record is a ghost. The function checks that this length fits within the
* block; callers must use it to make sure they never operate outside its
* bounds.
*/
static int apfs_node_locate_value(struct apfs_node *node, int index, int *off)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *raw;
int len;
if (index >= node->records) {
apfs_err(sb, "index out of bounds (%d of %d)", index, node->records);
return 0;
}
raw = (struct apfs_btree_node_phys *)node->object.data;
if (apfs_node_has_fixed_kv_size(node)) {
/* These node types have fixed length keys and values */
struct apfs_kvoff *entry;
entry = (struct apfs_kvoff *)raw->btn_data + index;
if (node->tree_type == APFS_OBJECT_TYPE_SPACEMAN_FREE_QUEUE) {
/* A free-space queue record may have no value */
if (le16_to_cpu(entry->v) == APFS_BTOFF_INVALID) {
*off = 0;
return 0;
}
len = 8;
} else {
/* This is an omap or omap snapshots node */
len = apfs_node_is_leaf(node) ? 16 : 8;
}
/*
* Value offsets are counted backwards from the end of the
* block, or from the beginning of the footer when it exists
*/
if (apfs_node_is_root(node)) /* has footer */
*off = sb->s_blocksize - sizeof(struct apfs_btree_info)
- le16_to_cpu(entry->v);
else
*off = sb->s_blocksize - le16_to_cpu(entry->v);
} else {
/* These node types have variable length keys and values */
struct apfs_kvloc *entry;
entry = (struct apfs_kvloc *)raw->btn_data + index;
len = le16_to_cpu(entry->v.len);
/*
* Value offsets are counted backwards from the end of the
* block, or from the beginning of the footer when it exists
*/
if (apfs_node_is_root(node)) /* has footer */
*off = sb->s_blocksize - sizeof(struct apfs_btree_info)
- le16_to_cpu(entry->v.off);
else
*off = sb->s_blocksize - le16_to_cpu(entry->v.off);
}
if (*off < 0 || *off + len > sb->s_blocksize) {
apfs_err(sb, "value out of bounds (%d-%d)", *off, len);
return 0;
}
return len;
}
/**
* apfs_create_toc_entry - Create the table-of-contents entry for a record
* @query: query pointing to the record
*
* Creates a toc entry for the record at index @query->index and increases
* @node->records. The caller must ensure enough space in the table.
*/
static void apfs_create_toc_entry(struct apfs_query *query)
{
struct apfs_node *node = query->node;
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *raw = (void *)node->object.data;
int value_end;
int recs = node->records;
int index = query->index;
value_end = sb->s_blocksize;
if (apfs_node_is_root(node))
value_end -= sizeof(struct apfs_btree_info);
if (apfs_node_has_fixed_kv_size(node)) {
struct apfs_kvoff *kvoff;
kvoff = (struct apfs_kvoff *)raw->btn_data + query->index;
memmove(kvoff + 1, kvoff, (recs - index) * sizeof(*kvoff));
if (!query->len) /* Ghost record */
kvoff->v = cpu_to_le16(APFS_BTOFF_INVALID);
else
kvoff->v = cpu_to_le16(value_end - query->off);
kvoff->k = cpu_to_le16(query->key_off - node->key);
} else {
struct apfs_kvloc *kvloc;
kvloc = (struct apfs_kvloc *)raw->btn_data + query->index;
memmove(kvloc + 1, kvloc, (recs - index) * sizeof(*kvloc));
kvloc->v.off = cpu_to_le16(value_end - query->off);
kvloc->v.len = cpu_to_le16(query->len);
kvloc->k.off = cpu_to_le16(query->key_off - node->key);
kvloc->k.len = cpu_to_le16(query->key_len);
}
node->records++;
}
/**
* apfs_key_from_query - Read the current key from a query structure
* @query: the query, with @query->key_off and @query->key_len already set
* @key: return parameter for the key
*
* Reads the key into @key and performs some basic sanity checks as a
* protection against crafted filesystems. Returns 0 on success or a
* negative error code otherwise.
*/
static int apfs_key_from_query(struct apfs_query *query, struct apfs_key *key)
{
struct super_block *sb = query->node->object.sb;
char *raw = query->node->object.data;
void *raw_key = (void *)(raw + query->key_off);
bool hashed;
int err = 0;
switch (query->flags & APFS_QUERY_TREE_MASK) {
case APFS_QUERY_CAT:
hashed = apfs_is_normalization_insensitive(sb);
err = apfs_read_cat_key(raw_key, query->key_len, key, hashed);
break;
case APFS_QUERY_OMAP:
err = apfs_read_omap_key(raw_key, query->key_len, key);
break;
case APFS_QUERY_FREE_QUEUE:
err = apfs_read_free_queue_key(raw_key, query->key_len, key);
break;
case APFS_QUERY_EXTENTREF:
err = apfs_read_extentref_key(raw_key, query->key_len, key);
break;
case APFS_QUERY_FEXT:
err = apfs_read_fext_key(raw_key, query->key_len, key);
break;
case APFS_QUERY_SNAP_META:
err = apfs_read_snap_meta_key(raw_key, query->key_len, key);
break;
case APFS_QUERY_OMAP_SNAP:
err = apfs_read_omap_snap_key(raw_key, query->key_len, key);
break;
default:
apfs_alert(sb, "new query type must implement key reads (%d)", query->flags & APFS_QUERY_TREE_MASK);
err = -EOPNOTSUPP;
break;
}
if (err)
apfs_err(sb, "bad node key in block 0x%llx", query->node->object.block_nr);
/* A multiple query must ignore some of these fields */
if (query->flags & APFS_QUERY_ANY_NAME)
key->name = NULL;
if (query->flags & APFS_QUERY_ANY_NUMBER)
key->number = 0;
return err;
}
/**
* apfs_node_prev - Find the previous record in the current node
* @sb: filesystem superblock
* @query: query in execution
*
* Returns 0 on success, -EAGAIN if the previous record is in another node,
* -ENODATA if no more records exist, or another negative error code in case
* of failure.
*
* The meaning of "next" and "previous" is reverted here, because regular
* multiple always start with the final record, and then they go backwards.
* TODO: consider renaming this for clarity.
*/
static int apfs_node_prev(struct super_block *sb, struct apfs_query *query)
{
struct apfs_node *node = query->node;
if (query->index + 1 == node->records) {
/* The next record may be in another node */
return -EAGAIN;
}
++query->index;
query->key_len = apfs_node_locate_key(node, query->index, &query->key_off);
if (query->key_len == 0) {
apfs_err(sb, "bad key for index %d", query->index);
return -EFSCORRUPTED;
}
query->len = apfs_node_locate_value(node, query->index, &query->off);
if (query->len == 0) {
apfs_err(sb, "bad value for index %d", query->index);
return -EFSCORRUPTED;
}
return 0;
}
/**
* apfs_node_next - Find the next matching record in the current node
* @sb: filesystem superblock
* @query: multiple query in execution
*
* Returns 0 on success, -EAGAIN if the next record is in another node,
* -ENODATA if no more matching records exist, or another negative error
* code in case of failure.
*/
static int apfs_node_next(struct super_block *sb, struct apfs_query *query)
{
struct apfs_node *node = query->node;
struct apfs_key curr_key;
int cmp, err;
if (query->flags & APFS_QUERY_DONE)
/* Nothing left to search; the query failed */
return -ENODATA;
if (!query->index) /* The next record may be in another node */
return -EAGAIN;
--query->index;
query->key_len = apfs_node_locate_key(node, query->index,
&query->key_off);
err = apfs_key_from_query(query, &curr_key);
if (err) {
apfs_err(sb, "bad key for index %d", query->index);
return err;
}
cmp = apfs_keycmp(&curr_key, &query->key);
if (cmp > 0) {
apfs_err(sb, "records are out of order");
return -EFSCORRUPTED;
}
if (cmp != 0 && apfs_node_is_leaf(node) &&
query->flags & APFS_QUERY_EXACT)
return -ENODATA;
query->len = apfs_node_locate_value(node, query->index, &query->off);
if (query->len == 0) {
apfs_err(sb, "bad value for index %d", query->index);
return -EFSCORRUPTED;
}
if (cmp != 0) {
/*
* This is the last entry that can be relevant in this node.
* Keep searching the children, but don't return to this level.
*/
query->flags |= APFS_QUERY_DONE;
}
return 0;
}
/**
* apfs_node_query - Execute a query on a single node
* @sb: filesystem superblock
* @query: the query to execute
*
* The search will start at index @query->index, looking for the key that comes
* right before @query->key, according to the order given by apfs_keycmp().
*
* The @query->index will be updated to the last index checked. This is
* important when searching for multiple entries, since the query may need
* to remember where it was on this level. If we are done with this node, the
* query will be flagged as APFS_QUERY_DONE, and the search will end in failure
* as soon as we return to this level. The function may also return -EAGAIN,
* to signal that the search should go on in a different branch.
*
* On success returns 0; the offset of the value within the block will be saved
* in @query->off, and its length in @query->len. The function checks that this
* length fits within the block; callers must use the returned value to make
* sure they never operate outside its bounds.
*
* -ENODATA will be returned if no appropriate entry was found, -EFSCORRUPTED
* in case of corruption.
*/
int apfs_node_query(struct super_block *sb, struct apfs_query *query)
{
struct apfs_node *node = query->node;
int left, right;
int cmp;
int err;
if (query->flags & APFS_QUERY_PREV)
return apfs_node_prev(sb, query);
if (query->flags & APFS_QUERY_NEXT)
return apfs_node_next(sb, query);
/* Search by bisection */
cmp = 1;
left = 0;
do {
struct apfs_key curr_key;
if (cmp > 0) {
right = query->index - 1;
if (right < left) {
query->index = -1;
return -ENODATA;
}
query->index = (left + right) / 2;
} else {
left = query->index;
query->index = DIV_ROUND_UP(left + right, 2);
}
query->key_len = apfs_node_locate_key(node, query->index,
&query->key_off);
err = apfs_key_from_query(query, &curr_key);
if (err) {
apfs_err(sb, "bad key for index %d", query->index);
return err;
}
cmp = apfs_keycmp(&curr_key, &query->key);
if (cmp == 0 && !(query->flags & APFS_QUERY_MULTIPLE))
break;
} while (left != right);
if (cmp > 0) {
query->index = -1;
return -ENODATA;
}
if (cmp != 0 && apfs_node_is_leaf(query->node) &&
query->flags & APFS_QUERY_EXACT)
return -ENODATA;
if (query->flags & APFS_QUERY_MULTIPLE) {
if (cmp != 0) /* Last relevant entry in level */
query->flags |= APFS_QUERY_DONE;
query->flags |= APFS_QUERY_NEXT;
}
query->len = apfs_node_locate_value(node, query->index, &query->off);
return 0;
}
/**
* apfs_node_query_first - Find the first record in a node
* @query: on return this query points to the record
*/
void apfs_node_query_first(struct apfs_query *query)
{
struct apfs_node *node = query->node;
query->index = 0;
query->key_len = apfs_node_locate_key(node, query->index, &query->key_off);
query->len = apfs_node_locate_value(node, query->index, &query->off);
}
/**
* apfs_omap_map_from_query - Read the mapping found by a successful omap query
* @query: the query that found the record
* @map: Return parameter. The mapping found.
*
* Returns -EOPNOTSUPP if the object doesn't fit in one block, and -EFSCORRUPTED
* if the filesystem appears to be malicious. Otherwise, reads the mapping info
* in the omap record into @map and returns 0.
*/
int apfs_omap_map_from_query(struct apfs_query *query, struct apfs_omap_map *map)
{
struct super_block *sb = query->node->object.sb;
struct apfs_omap_key *key = NULL;
struct apfs_omap_val *val = NULL;
char *raw = query->node->object.data;
if (query->len != sizeof(*val) || query->key_len != sizeof(*key)) {
apfs_err(sb, "bad length of key (%d) or value (%d)", query->key_len, query->len);
return -EFSCORRUPTED;
}
key = (struct apfs_omap_key *)(raw + query->key_off);
val = (struct apfs_omap_val *)(raw + query->off);
/* TODO: support objects with multiple blocks */
if (le32_to_cpu(val->ov_size) != sb->s_blocksize) {
apfs_err(sb, "object size doesn't match block size");
return -EOPNOTSUPP;
}
map->xid = le64_to_cpu(key->ok_xid);
map->bno = le64_to_cpu(val->ov_paddr);
map->flags = le32_to_cpu(val->ov_flags);
return 0;
}
/**
* apfs_btree_inc_height - Increase the height of a b-tree
* @query: query pointing to the root node
*
* On success returns 0, and @query is left pointing to the same record.
* Returns a negative error code in case of failure.
*/
static int apfs_btree_inc_height(struct apfs_query *query)
{
struct apfs_query *root_query;
struct apfs_node *root = query->node;
struct apfs_node *new_node;
struct super_block *sb = root->object.sb;
struct apfs_btree_node_phys *root_raw;
struct apfs_btree_node_phys *new_raw;
struct apfs_btree_info *info;
__le64 *raw_oid;
u32 storage = apfs_query_storage(query);
root_raw = (void *)root->object.data;
apfs_assert_in_transaction(sb, &root_raw->btn_o);
if (query->parent || query->depth) {
apfs_err(sb, "invalid root query");
return -EFSCORRUPTED;
}
/* Create a new child node */
new_node = apfs_create_node(sb, storage);
if (IS_ERR(new_node)) {
apfs_err(sb, "node creation failed");
return PTR_ERR(new_node);
}
new_node->flags = root->flags & ~APFS_BTNODE_ROOT;
new_node->tree_type = root->tree_type;
/* Move all records into the child node; get rid of the info footer */
new_node->records = root->records;
new_node->key = root->key;
new_node->free = root->free;
new_node->val = root->val + sizeof(*info);
new_node->key_free_list_len = root->key_free_list_len;
new_node->val_free_list_len = root->val_free_list_len;
new_raw = (void *)new_node->object.data;
/* Don't copy the object header, already set by apfs_create_node() */
memcpy((void *)new_raw + sizeof(new_raw->btn_o),
(void *)root_raw + sizeof(root_raw->btn_o),
root->free - sizeof(new_raw->btn_o));
memcpy((void *)new_raw + new_node->val,
(void *)root_raw + root->val,
sb->s_blocksize - new_node->val);
query->off += sizeof(*info);
apfs_update_node(new_node);
/* Add a new level to the query chain */
root_query = query->parent = apfs_alloc_query(root, NULL /* parent */);
if (!query->parent) {
apfs_node_free(new_node);
return -ENOMEM;
}
root_query->key = query->key;
root_query->flags = query->flags;
query->node = new_node;
query->depth = 1;
/* Now assemble the new root with only the first key */
root_query->key_len = apfs_node_locate_key(root, 0 /* index */,
&root_query->key_off);
if (!root_query->key_len) {
apfs_err(sb, "bad key for index %d", 0);
return -EFSCORRUPTED;
}
root->key = sizeof(*root_raw) +
apfs_node_min_table_size(sb, root->tree_type, root->flags & ~APFS_BTNODE_LEAF);
memmove((void *)root_raw + root->key,
(void *)root_raw + root_query->key_off, root_query->key_len);
root_query->key_off = root->key;
root->free = root->key + root_query->key_len;
/* The new root is a nonleaf node; the record value is the child id */
root->flags &= ~APFS_BTNODE_LEAF;
root->val = sb->s_blocksize - sizeof(*info) - sizeof(*raw_oid);
raw_oid = (void *)root_raw + root->val;
*raw_oid = cpu_to_le64(new_node->object.oid);
root_query->off = root->val;
root_query->len = sizeof(*raw_oid);
/* With the key and value in place, set the table-of-contents */
root->records = 0;
root_query->index = 0;
apfs_create_toc_entry(root_query);
/* There is no internal fragmentation */
root->key_free_list_len = 0;
root->val_free_list_len = 0;
/* Finally, update the node count in the info footer */
apfs_btree_change_node_count(root_query, 1 /* change */);
le16_add_cpu(&root_raw->btn_level, 1); /* TODO: move to update_node() */
apfs_update_node(root);
return 0;
}
/**
* apfs_copy_record_range - Copy a range of records to an empty node
* @dest_node: destination node
* @src_node: source node
* @start: index of first record in range
* @end: index of first record after the range
*
* Doesn't modify the info footer of root nodes. Returns 0 on success or a
* negative error code in case of failure.
*/
static int apfs_copy_record_range(struct apfs_node *dest_node,
struct apfs_node *src_node,
int start, int end)
{
struct super_block *sb = dest_node->object.sb;
struct apfs_btree_node_phys *dest_raw;
struct apfs_btree_node_phys *src_raw;
struct apfs_query *query = NULL;
int toc_size, toc_entry_size;
int err;
int i;
dest_raw = (void *)dest_node->object.data;
src_raw = (void *)src_node->object.data;
ASSERT(!dest_node->records);
apfs_assert_in_transaction(sb, &dest_raw->btn_o);
/* Resize the table of contents so that all the records fit */
if (apfs_node_has_fixed_kv_size(src_node))
toc_entry_size = sizeof(struct apfs_kvoff);
else
toc_entry_size = sizeof(struct apfs_kvloc);
toc_size = apfs_node_min_table_size(sb, src_node->tree_type, src_node->flags);
if (toc_size < toc_entry_size * (end - start))
toc_size = toc_entry_size * round_up(end - start, APFS_BTREE_TOC_ENTRY_INCREMENT);
dest_node->key = sizeof(*dest_raw) + toc_size;
dest_node->free = dest_node->key;
dest_node->val = sb->s_blocksize;
if (apfs_node_is_root(dest_node))
dest_node->val -= sizeof(struct apfs_btree_info);
/* We'll use a temporary query structure to move the records around */
query = apfs_alloc_query(dest_node, NULL /* parent */);
if (!query) {
err = -ENOMEM;
goto fail;
}
err = -EFSCORRUPTED;
for (i = start; i < end; ++i) {
int len, off;
len = apfs_node_locate_key(src_node, i, &off);
if (dest_node->free + len > sb->s_blocksize) {
apfs_err(sb, "key of length %d doesn't fit", len);
goto fail;
}
memcpy((char *)dest_raw + dest_node->free,
(char *)src_raw + off, len);
query->key_off = dest_node->free;
query->key_len = len;
dest_node->free += len;
len = apfs_node_locate_value(src_node, i, &off);
dest_node->val -= len;
if (dest_node->val < 0) {
apfs_err(sb, "value of length %d doesn't fit", len);
goto fail;
}
memcpy((char *)dest_raw + dest_node->val,
(char *)src_raw + off, len);
query->off = dest_node->val;
query->len = len;
query->index = i - start;
apfs_create_toc_entry(query);
}
err = 0;
fail:
apfs_free_query(query);
return err;
}
/**
* apfs_attach_child - Attach a new node to its parent
* @query: query pointing to the previous record in the parent
* @child: the new child node to attach
*
* Returns 0 on success or a negative error code in case of failure (which may
* be -EAGAIN if a node split has happened and the caller must refresh and
* retry).
*/
static int apfs_attach_child(struct apfs_query *query, struct apfs_node *child)
{
struct apfs_object *object = &child->object;
struct apfs_btree_node_phys *raw = (void *)object->data;
int key_len, key_off;
__le64 raw_oid = cpu_to_le64(object->oid);
key_len = apfs_node_locate_key(child, 0, &key_off);
if (!key_len) {
/* This should never happen: @child was made by us */
apfs_alert(object->sb, "bad key for index %d", 0);
return -EFSCORRUPTED;
}
return __apfs_btree_insert(query, (void *)raw + key_off, key_len, &raw_oid, sizeof(raw_oid));
}
/**
* apfs_node_temp_dup - Make an in-memory duplicate of a node
* @original: node to duplicate
* @duplicate: on success, the duplicate node
*
* Returns 0 on success or a negative error code in case of failure.
*/
static int apfs_node_temp_dup(const struct apfs_node *original, struct apfs_node **duplicate)
{
struct super_block *sb = original->object.sb;
struct apfs_node *dup = NULL;
char *buffer = NULL;
dup = kmalloc(sizeof(*dup), GFP_KERNEL);
if (!dup)
return -ENOMEM;
*dup = *original;
dup->object.o_bh = NULL;
dup->object.data = NULL;
dup->object.ephemeral = false;
buffer = kmalloc(sb->s_blocksize, GFP_KERNEL);
if (!buffer) {
kfree(dup);
return -ENOMEM;
}
memcpy(buffer, original->object.data, sb->s_blocksize);
dup->object.data = buffer;
*duplicate = dup;
return 0;
}
/**
* apfs_node_split - Split a b-tree node in two
* @query: query pointing to the node
*
* On success returns 0, and @query is left pointing to the same record on the
* tip; to simplify the implementation, @query->parent is set to NULL. Returns
* a negative error code in case of failure, which may be -EAGAIN if a node
* split has happened and the caller must refresh and retry.
*/
int apfs_node_split(struct apfs_query *query)
{
struct super_block *sb = query->node->object.sb;
struct apfs_node *old_node = NULL, *new_node = NULL, *tmp_node = NULL;
struct apfs_btree_node_phys *new_raw = NULL, *old_raw = NULL;
u32 storage = apfs_query_storage(query);
int record_count, new_rec_count, old_rec_count;
int err;
apfs_assert_query_is_valid(query);
if (apfs_node_is_root(query->node)) {
err = apfs_btree_inc_height(query);
if (err) {
apfs_err(sb, "failed to increase tree height");
return err;
}
} else if (!query->parent) {
apfs_err(sb, "nonroot node with no parent");
return -EFSCORRUPTED;
}
old_node = query->node;
old_raw = (void *)old_node->object.data;
apfs_assert_in_transaction(sb, &old_raw->btn_o);
/*
* To defragment the original node, we put all records in a temporary
* in-memory node before dealing them out.
*/
err = apfs_node_temp_dup(old_node, &tmp_node);
if (err)
return err;
record_count = old_node->records;
if (record_count == 1) {
apfs_alert(sb, "splitting node with a single record");
err = -EFSCORRUPTED;
goto out;
}
new_rec_count = record_count / 2;
old_rec_count = record_count - new_rec_count;
/*
* The second half of the records go into a new node. This is done
* before the first half to avoid committing to any actual changes
* until we know for sure that no ancestor splits are expected.
*/
new_node = apfs_create_node(sb, storage);
if (IS_ERR(new_node)) {
apfs_err(sb, "node creation failed");
err = PTR_ERR(new_node);
new_node = NULL;
goto out;
}
new_node->tree_type = old_node->tree_type;
new_node->flags = old_node->flags;
new_node->records = 0;
new_node->key_free_list_len = 0;
new_node->val_free_list_len = 0;
err = apfs_copy_record_range(new_node, tmp_node, old_rec_count, record_count);
if (err) {
apfs_err(sb, "record copy failed");
goto out;
}
new_raw = (void *)new_node->object.data;
apfs_assert_in_transaction(sb, &new_raw->btn_o);
new_raw->btn_level = old_raw->btn_level;
apfs_update_node(new_node);
err = apfs_attach_child(query->parent, new_node);
if (err) {
if (err != -EAGAIN) {
apfs_err(sb, "child attachment failed");
goto out;
}
err = apfs_delete_node(new_node, query->flags & APFS_QUERY_TREE_MASK);
if (err) {
apfs_err(sb, "node cleanup failed for query retry");
goto out;
}
err = -EAGAIN;
goto out;
}
apfs_assert_query_is_valid(query->parent);
apfs_btree_change_node_count(query->parent, 1 /* change */);
/*
* No more risk of ancestor splits, now actual changes can be made. The
* first half of the records go into the original node.
*/
old_node->records = 0;
old_node->key_free_list_len = 0;
old_node->val_free_list_len = 0;
err = apfs_copy_record_range(old_node, tmp_node, 0, old_rec_count);
if (err) {
apfs_err(sb, "record copy failed");
goto out;
}
apfs_update_node(old_node);
/* Point the query back to the original record */
if (query->index >= old_rec_count) {
/* The record got moved to the new node */
apfs_node_free(query->node);
query->node = new_node;
new_node = NULL;
query->index -= old_rec_count;
}
/*
* This could be avoided in most cases, and queries could get refreshed
* only when really orphaned. But refreshing queries is probably not a
* bottleneck, and trying to be clever with this stuff has caused me a
* lot of trouble already.
*/
apfs_free_query(query->parent);
query->parent = NULL; /* The caller only gets the leaf */
out:
apfs_node_free(new_node);
apfs_node_free(tmp_node);
return err;
}
/* TODO: the following 4 functions could be reused elsewhere */
/**
* apfs_off_to_val_off - Translate offset in node to offset in value area
* @node: the node
* @off: offset in the node
*/
static u16 apfs_off_to_val_off(struct apfs_node *node, u16 off)
{
struct super_block *sb = node->object.sb;
u16 val_end;
val_end = sb->s_blocksize;
if (apfs_node_is_root(node)) /* has footer */
val_end -= sizeof(struct apfs_btree_info);
return val_end - off;
}
/**
* apfs_val_off_to_off - Translate offset in value area to offset in node
* @node: the node
* @off: offset in the value area
*/
static u16 apfs_val_off_to_off(struct apfs_node *node, u16 off)
{
return apfs_off_to_val_off(node, off);
}
/**
* apfs_off_to_key_off - Translate offset in node to offset in key area
* @node: the node
* @off: offset in the node
*/
static u16 apfs_off_to_key_off(struct apfs_node *node, u16 off)
{
return off - node->key;
}
/**
* apfs_key_off_to_off - Translate offset in key area to offset in node
* @node: the node
* @off: offset in the key area
*/
static u16 apfs_key_off_to_off(struct apfs_node *node, u16 off)
{
return off + node->key;
}
/* The type of the previous four functions, used for node offset calculations */
typedef u16 (*offcalc)(struct apfs_node *, u16);
/**
* apfs_node_free_list_add - Add a free node segment to the proper free list
* @node: node for the segment
* @off: offset of the segment to add
* @len: length of the segment to add
*
* The caller must ensure that the freed segment fits in the node.
*/
static void apfs_node_free_list_add(struct apfs_node *node, u16 off, u16 len)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
struct apfs_nloc *head, *new;
offcalc off_to_rel;
apfs_assert_in_transaction(sb, &node_raw->btn_o);
if (off >= node->val) { /* Value area */
off_to_rel = apfs_off_to_val_off;
head = &node_raw->btn_val_free_list;
node->val_free_list_len += len;
} else { /* Key area */
off_to_rel = apfs_off_to_key_off;
head = &node_raw->btn_key_free_list;
node->key_free_list_len += len;
}
/* Very small segments are leaked until defragmentation */
if (len < sizeof(*new))
return;
/* The free list doesn't seem to be kept in any particular order */
new = (void *)node_raw + off;
new->off = head->off;
new->len = cpu_to_le16(len);
head->off = cpu_to_le16(off_to_rel(node, off));
}
/**
* apfs_node_free_range - Free space from a node's key or value areas
* @node: the node
* @off: offset to free
* @len: length to free
*
* Returns 0 on success or a negative error code in case of failure.
*/
void apfs_node_free_range(struct apfs_node *node, u16 off, u16 len)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *raw = (void *)node->object.data;
apfs_assert_in_transaction(sb, &raw->btn_o);
if (off == node->val)
node->val += len;
else if (off + len == node->free)
node->free -= len;
else
apfs_node_free_list_add(node, off, len);
}
/**
* apfs_node_free_list_unlink - Unlink an entry from a node's free list
* @prev: previous entry
* @curr: entry to unlink
*/
static void apfs_node_free_list_unlink(struct apfs_nloc *prev, struct apfs_nloc *curr)
{
prev->off = curr->off;
}
/**
* apfs_node_free_list_alloc - Allocate a free segment from a free list
* @node: the node
* @len: length to allocate
* @value: true to allocate in the value area, false for the key area
*
* Returns the offset in the node on success, or a negative error code in case
* of failure, which may be -ENOSPC if the node seems full.
*/
static int apfs_node_free_list_alloc(struct apfs_node *node, u16 len, bool value)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
struct apfs_nloc *head, *curr, *prev;
offcalc rel_to_off;
int *list_len;
int bound = sb->s_blocksize;
apfs_assert_in_transaction(sb, &node_raw->btn_o);
if (value) { /* Value area */
rel_to_off = apfs_val_off_to_off;
head = &node_raw->btn_val_free_list;
list_len = &node->val_free_list_len;
} else { /* Key area */
rel_to_off = apfs_key_off_to_off;
head = &node_raw->btn_key_free_list;
list_len = &node->key_free_list_len;
}
if (*list_len < len)
return -ENOSPC;
prev = head;
while (bound--) {
u16 curr_off = le16_to_cpu(prev->off);
u16 abs_off = rel_to_off(node, curr_off);
u16 curr_len;
if (curr_off == APFS_BTOFF_INVALID)
return -ENOSPC;
if (abs_off + sizeof(*curr) > sb->s_blocksize) {
apfs_err(sb, "nloc out of bounds (%d-%d)", abs_off, (int)sizeof(*curr));
return -EFSCORRUPTED;
}
curr = (void *)node_raw + abs_off;
curr_len = le16_to_cpu(curr->len);
if (curr_len >= len) {
if (abs_off + curr_len > sb->s_blocksize) {
apfs_err(sb, "entry out of bounds (%d-%d)", abs_off, curr_len);
return -EFSCORRUPTED;
}
*list_len -= curr_len;
apfs_node_free_list_unlink(prev, curr);
apfs_node_free_list_add(node, abs_off + len, curr_len - len);
return abs_off;
}
prev = curr;
}
/* Don't loop forever if the free list is corrupted and doesn't end */
apfs_err(sb, "free list never ends");
return -EFSCORRUPTED;
}
/**
* apfs_node_alloc_key - Allocated free space for a new key
* @node: the node to search
* @len: wanted key length
*
* Returns the offset in the node on success, or a negative error code in case
* of failure, which may be -ENOSPC if the node seems full.
*/
static int apfs_node_alloc_key(struct apfs_node *node, u16 len)
{
int off;
if (node->free + len <= node->val) {
off = node->free;
node->free += len;
return off;
}
return apfs_node_free_list_alloc(node, len, false /* value */);
}
/**
* apfs_node_alloc_val - Allocated free space for a new value
* @node: the node to search
* @len: wanted value length
*
* Returns the offset in the node on success, or a negative error code in case
* of failure, which may be -ENOSPC if the node seems full.
*/
static int apfs_node_alloc_val(struct apfs_node *node, u16 len)
{
int off;
if (node->free + len <= node->val) {
off = node->val - len;
node->val -= len;
return off;
}
return apfs_node_free_list_alloc(node, len, true /* value */);
}
/**
* apfs_node_total_room - Total free space in a node
* @node: the node
*/
static int apfs_node_total_room(struct apfs_node *node)
{
return node->val - node->free + node->key_free_list_len + node->val_free_list_len;
}
/**
* apfs_node_has_room - Check if a node has room for insertion or replacement
* @node: node to check
* @length: length of the needed space (may be negative on replace)
* @replace: are we replacing a record?
*/
bool apfs_node_has_room(struct apfs_node *node, int length, bool replace)
{
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
int toc_entry_size, needed_room;
if (apfs_node_has_fixed_kv_size(node))
toc_entry_size = sizeof(struct apfs_kvoff);
else
toc_entry_size = sizeof(struct apfs_kvloc);
needed_room = length;
if (!replace) {
if (sizeof(*node_raw) + (node->records + 1) * toc_entry_size > node->key)
needed_room += APFS_BTREE_TOC_ENTRY_INCREMENT * toc_entry_size;
}
return apfs_node_total_room(node) >= needed_room;
}
/**
* apfs_defragment_node - Make all free space in a node contiguous
* @node: node to defragment
*
* Returns 0 on success or a negative error code in case of failure.
*/
static int apfs_defragment_node(struct apfs_node *node)
{
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
struct apfs_node *tmp_node = NULL;
int record_count, err;
apfs_assert_in_transaction(sb, &node_raw->btn_o);
/* Put all records in a temporary in-memory node and deal them out */
err = apfs_node_temp_dup(node, &tmp_node);
if (err)
return err;
record_count = node->records;
node->records = 0;
node->key_free_list_len = 0;
node->val_free_list_len = 0;
err = apfs_copy_record_range(node, tmp_node, 0, record_count);
if (err) {
apfs_err(sb, "record copy failed");
goto fail;
}
apfs_update_node(node);
fail:
apfs_node_free(tmp_node);
return err;
}
/**
* apfs_node_update_toc_entry - Update a table of contents entry in place
* @query: query pointing to the toc entry
*
* The toc entry gets updated with the length and offset for the key/value
* provided by @query. Don't call this function for nodes with fixed length
* key/values, those never need to update their toc entries.
*/
static void apfs_node_update_toc_entry(struct apfs_query *query)
{
struct super_block *sb = NULL;
struct apfs_node *node = NULL;
struct apfs_btree_node_phys *node_raw = NULL;
struct apfs_kvloc *kvloc = NULL;
int value_end;
node = query->node;
ASSERT(!apfs_node_has_fixed_kv_size(node));
sb = node->object.sb;
node_raw = (void *)node->object.data;
value_end = sb->s_blocksize;
if (apfs_node_is_root(node))
value_end -= sizeof(struct apfs_btree_info);
kvloc = (struct apfs_kvloc *)node_raw->btn_data + query->index;
kvloc->v.off = cpu_to_le16(value_end - query->off);
kvloc->v.len = cpu_to_le16(query->len);
kvloc->k.off = cpu_to_le16(query->key_off - node->key);
kvloc->k.len = cpu_to_le16(query->key_len);
}
/**
* apfs_node_replace - Replace a record in a node that has enough room
* @query: exact query that found the record
* @key: new on-disk record key (NULL if unchanged)
* @key_len: length of @key
* @val: new on-disk record value (NULL if unchanged)
* @val_len: length of @val
*
* Returns 0 on success, and @query is left pointing to the same record. Returns
* a negative error code in case of failure.
*/
int apfs_node_replace(struct apfs_query *query, void *key, int key_len, void *val, int val_len)
{
struct apfs_node *node = query->node;
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
int key_off = 0, val_off = 0, err = 0;
bool defragged = false;
int qtree = query->flags & APFS_QUERY_TREE_MASK;
apfs_assert_in_transaction(sb, &node_raw->btn_o);
/*
* Free queues are weird because their tables of contents don't report
* record lengths, as if they were fixed, but some of the leaf values
* are actually "ghosts", that is, zero-length. Supporting replace of
* such records would require some changes, and so far I've had no need
* for it.
*/
(void)qtree;
ASSERT(!(qtree == APFS_QUERY_FREE_QUEUE && apfs_node_is_leaf(node)));
retry:
if (key) {
if (key_len <= query->key_len) {
u16 end = query->key_off + key_len;
u16 diff = query->key_len - key_len;
apfs_node_free_range(node, end, diff);
key_off = query->key_off;
} else {
apfs_node_free_range(node, query->key_off, query->key_len);
key_off = apfs_node_alloc_key(node, key_len);
if (key_off < 0) {
if (key_off == -ENOSPC)
goto defrag;
return key_off;
}
}
}
if (val) {
if (val_len <= query->len) {
u16 end = query->off + val_len;
u16 diff = query->len - val_len;
apfs_node_free_range(node, end, diff);
val_off = query->off;
} else {
apfs_node_free_range(node, query->off, query->len);
val_off = apfs_node_alloc_val(node, val_len);
if (val_off < 0) {
if (val_off == -ENOSPC)
goto defrag;
return val_off;
}
}
}
if (key) {
query->key_off = key_off;
query->key_len = key_len;
memcpy((void *)node_raw + key_off, key, key_len);
}
if (val) {
query->off = val_off;
query->len = val_len;
memcpy((void *)node_raw + val_off, val, val_len);
}
/* If the key or value were resized, update the table of contents */
if (!apfs_node_has_fixed_kv_size(node))
apfs_node_update_toc_entry(query);
apfs_update_node(node);
return 0;
defrag:
if (defragged) {
apfs_alert(sb, "no room in defragged node");
return -EFSCORRUPTED;
}
/* Crush the replaced entry, so that defragmentation is complete */
if (apfs_node_has_fixed_kv_size(node)) {
apfs_alert(sb, "failed to replace a fixed size record");
return -EFSCORRUPTED;
}
if (key)
query->key_len = 0;
if (val)
query->len = 0;
apfs_node_update_toc_entry(query);
err = apfs_defragment_node(node);
if (err) {
apfs_err(sb, "failed to defragment node");
return err;
}
defragged = true;
/* The record to replace probably moved around */
query->len = apfs_node_locate_value(query->node, query->index, &query->off);
query->key_len = apfs_node_locate_key(query->node, query->index, &query->key_off);
goto retry;
}
/**
* apfs_node_insert - Insert a new record in a node that has enough room
* @query: query run to search for the record
* @key: on-disk record key
* @key_len: length of @key
* @val: on-disk record value (NULL for ghost records)
* @val_len: length of @val (0 for ghost records)
*
* The new record is placed right after the one found by @query. On success,
* returns 0 and sets @query to the new record. In case of failure, returns a
* negative error code and leaves @query pointing to the same record.
*/
int apfs_node_insert(struct apfs_query *query, void *key, int key_len, void *val, int val_len)
{
struct apfs_node *node = query->node;
struct super_block *sb = node->object.sb;
struct apfs_btree_node_phys *node_raw = (void *)node->object.data;
int toc_entry_size;
int key_off, val_off, err;
bool defragged = false;
apfs_assert_in_transaction(sb, &node_raw->btn_o);
retry:
if (apfs_node_has_fixed_kv_size(node))
toc_entry_size = sizeof(struct apfs_kvoff);
else
toc_entry_size = sizeof(struct apfs_kvloc);
/* Expand the table of contents if necessary */
if (sizeof(*node_raw) + (node->records + 1) * toc_entry_size > node->key) {
int new_key_base = node->key;
int new_free_base = node->free;
int inc;
inc = APFS_BTREE_TOC_ENTRY_INCREMENT * toc_entry_size;
new_key_base += inc;
new_free_base += inc;
if (new_free_base > node->val)
goto defrag;
memmove((void *)node_raw + new_key_base,
(void *)node_raw + node->key, node->free - node->key);
node->key = new_key_base;
node->free = new_free_base;
query->key_off += inc;
}
key_off = apfs_node_alloc_key(node, key_len);
if (key_off < 0) {
if (key_off == -ENOSPC)
goto defrag;
return key_off;
}
if (val) {
val_off = apfs_node_alloc_val(node, val_len);
if (val_off < 0) {
if (val_off == -ENOSPC) {
/*
* There is no need for an update of the on-disk
* node before the defrag, since only in-memory
* data should be used there...
*/
goto defrag;
}
return val_off;
}
}
query->key_len = key_len;
query->key_off = key_off;
memcpy((void *)node_raw + key_off, key, key_len);
query->len = val_len;
if (val) {
query->off = val_off;
memcpy((void *)node_raw + val_off, val, val_len);
} else {
query->off = 0;
}
query->index++; /* The query returned the record right before @key */
/* Add the new entry to the table of contents */
apfs_create_toc_entry(query);
apfs_update_node(node);
return 0;
defrag:
if (defragged) {
apfs_err(sb, "node reports incorrect free space");
return -EFSCORRUPTED;
}
err = apfs_defragment_node(node);
if (err) {
apfs_err(sb, "failed to defragment node");
return err;
}
defragged = true;
goto retry;
}
/**
* apfs_create_single_rec_node - Creates a new node with a single record
* @query: query run to search for the record
* @key: on-disk record key
* @key_len: length of @key
* @val: on-disk record value
* @val_len: length of @val
*
* The new node is placed right after the one found by @query, which must have
* a single record. On success, returns 0 and sets @query to the new record;
* returns a negative error code in case of failure, which may be -EAGAIN if a
* node split has happened and the caller must refresh and retry.
*/
int apfs_create_single_rec_node(struct apfs_query *query, void *key, int key_len, void *val, int val_len)
{
struct super_block *sb = NULL;
struct apfs_node *new_node = NULL, *prev_node = NULL;
struct apfs_btree_node_phys *prev_raw = NULL;
struct apfs_btree_node_phys *new_raw = NULL;
int err;
prev_node = query->node;
sb = prev_node->object.sb;
ASSERT(query->parent);
ASSERT(prev_node->records == 1);
ASSERT(val && val_len);
/* This function should only be needed for huge catalog records */
if (prev_node->tree_type != APFS_OBJECT_TYPE_FSTREE) {
apfs_err(sb, "huge node records in the wrong tree");
return -EFSCORRUPTED;
}
/*
* This will only be called for leaf nodes because it's the values that
* can get huge, not the keys. It will also never be called for root,
* because the catalog always has more than a single record.
*/
if (apfs_node_is_root(prev_node) || !apfs_node_is_leaf(prev_node)) {
apfs_err(sb, "huge record in index node");
return -EFSCORRUPTED;
}
new_node = apfs_create_node(sb, apfs_query_storage(query));
if (IS_ERR(new_node)) {
apfs_err(sb, "node creation failed");
return PTR_ERR(new_node);
}
new_node->tree_type = prev_node->tree_type;
new_node->flags = prev_node->flags;
new_node->records = 0;
new_node->key_free_list_len = 0;
new_node->val_free_list_len = 0;
new_node->key = new_node->free = sizeof(*new_raw);
new_node->val = sb->s_blocksize; /* Nonroot */
prev_raw = (void *)prev_node->object.data;
new_raw = (void *)new_node->object.data;
apfs_assert_in_transaction(sb, &new_raw->btn_o);
new_raw->btn_level = prev_raw->btn_level;
apfs_update_node(new_node);
query->node = new_node;
new_node = NULL;
query->index = -1;
err = apfs_node_insert(query, key, key_len, val, val_len);
if (err) {
apfs_err(sb, "node record insertion failed");
goto fail;
}
err = apfs_attach_child(query->parent, query->node);
if (err) {
if (err != -EAGAIN) {
apfs_err(sb, "child attachment failed");
goto fail;
}
err = apfs_delete_node(query->node, query->flags & APFS_QUERY_TREE_MASK);
if (err) {
apfs_err(sb, "node cleanup failed for query retry");
goto fail;
}
/*
* The query must remain pointing to the original node for the
* refresh to take place. The index will not matter though.
*/
new_node = query->node;
query->node = prev_node;
prev_node = NULL;
err = -EAGAIN;
goto fail;
}
apfs_btree_change_node_count(query->parent, 1 /* change */);
fail:
apfs_node_free(prev_node);
apfs_node_free(new_node);
return err;
}
|