1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*
* eeh.h
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Start Change Log
* 2001/10/27 : engebret : Created.
* End Change Log
*/
#ifndef _EEH_H
#define _EEH_H
#include <linux/string.h>
struct pci_dev;
/* I/O addresses are converted to EEH "tokens" such that a driver will cause
* a bad page fault if the address is used directly (i.e. these addresses are
* never actually mapped. Translation between IO <-> EEH region is 1 to 1.
*/
#define IO_TOKEN_TO_ADDR(token) (((unsigned long)(token) & ~(0xfUL << REGION_SHIFT)) | \
(IO_REGION_ID << REGION_SHIFT))
#define IO_ADDR_TO_TOKEN(addr) (((unsigned long)(addr) & ~(0xfUL << REGION_SHIFT)) | \
(EEH_REGION_ID << REGION_SHIFT))
/* Values for eeh_mode bits in device_node */
#define EEH_MODE_SUPPORTED (1<<0)
#define EEH_MODE_NOCHECK (1<<1)
/* This is for profiling only */
extern unsigned long eeh_total_mmio_ffs;
void eeh_init(void);
int eeh_get_state(unsigned long ea);
unsigned long eeh_check_failure(void *token, unsigned long val);
void *eeh_ioremap(unsigned long addr, void *vaddr);
#define EEH_DISABLE 0
#define EEH_ENABLE 1
#define EEH_RELEASE_LOADSTORE 2
#define EEH_RELEASE_DMA 3
int eeh_set_option(struct pci_dev *dev, int options);
/* Given a PCI device check if eeh should be configured or not.
* This may look at firmware properties and/or kernel cmdline options.
*/
int is_eeh_configured(struct pci_dev *dev);
/* Translate a (possible) eeh token to a physical addr.
* If "token" is not an eeh token it is simply returned under
* the assumption that it is already a physical addr.
*/
unsigned long eeh_token_to_phys(unsigned long token);
/* EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
*
* Order this macro for performance.
* If EEH is off for a device and it is a memory BAR, ioremap will
* map it to the IOREGION. In this case addr == vaddr and since these
* should be in registers we compare them first. Next we check for
* ff's which indicates a (very) possible failure.
*
* If this macro yields TRUE, the caller relays to eeh_check_failure()
* which does further tests out of line.
*/
/* #define EEH_POSSIBLE_IO_ERROR(val) (~(val) == 0) */
/* #define EEH_POSSIBLE_ERROR(addr, vaddr, val) ((vaddr) != (addr) && EEH_POSSIBLE_IO_ERROR(val) */
/* This version is rearranged to collect some profiling data */
#define EEH_POSSIBLE_IO_ERROR(val) (~(val) == 0 && ++eeh_total_mmio_ffs)
#define EEH_POSSIBLE_ERROR(addr, vaddr, val) (EEH_POSSIBLE_IO_ERROR(val) && (vaddr) != (addr))
/*
* MMIO read/write operations with EEH support.
*
* addr: 64b token of the form 0xA0PPBBDDyyyyyyyy
* 0xA0 : Unmapped MMIO region
* PP : PHB index (starting at zero)
* BB : PCI Bus number under given PHB
* DD : PCI devfn under given bus
* yyyyyyyy : Virtual address offset
*
* An actual virtual address is produced from this token
* by masking into the form:
* 0xE0000000yyyyyyyy
*/
static inline u8 eeh_readb(void *addr) {
volatile u8 *vaddr = (volatile u8 *)IO_TOKEN_TO_ADDR(addr);
u8 val = in_8(vaddr);
if (EEH_POSSIBLE_ERROR(addr, vaddr, val))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writeb(u8 val, void *addr) {
volatile u8 *vaddr = (volatile u8 *)IO_TOKEN_TO_ADDR(addr);
out_8(vaddr, val);
}
static inline u16 eeh_readw(void *addr) {
volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr);
u16 val = in_le16(vaddr);
if (EEH_POSSIBLE_ERROR(addr, vaddr, val))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writew(u16 val, void *addr) {
volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr);
out_le16(vaddr, val);
}
static inline u32 eeh_readl(void *addr) {
volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr);
u32 val = in_le32(vaddr);
if (EEH_POSSIBLE_ERROR(addr, vaddr, val))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writel(u32 val, void *addr) {
volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr);
out_le32(vaddr, val);
}
static inline void eeh_memset_io(void *addr, int c, unsigned long n) {
void *vaddr = (void *)IO_TOKEN_TO_ADDR(addr);
memset(vaddr, c, n);
}
static inline void eeh_memcpy_fromio(void *dest, void *src, unsigned long n) {
void *vsrc = (void *)IO_TOKEN_TO_ADDR(src);
memcpy(dest, vsrc, n);
/* look for ffff's here at dest[n] */
}
static inline void eeh_memcpy_toio(void *dest, void *src, unsigned long n) {
void *vdest = (void *)IO_TOKEN_TO_ADDR(dest);
memcpy(vdest, src, n);
}
/* The I/O macros must handle ISA ports as well as PCI I/O bars.
* ISA does not implement EEH and ISA may not exist in the system.
* For PCI we check for EEH failures.
*/
#define _IO_IS_ISA(port) ((port) < 0x10000)
#define _IO_HAS_ISA_BUS (isa_io_base != 0)
static inline u8 eeh_inb(unsigned long port) {
u8 val;
if (_IO_IS_ISA(port) && !_IO_HAS_ISA_BUS)
return ~0;
val = in_8((u8 *)(port+pci_io_base));
if (!_IO_IS_ISA(port) && EEH_POSSIBLE_IO_ERROR(val))
return eeh_check_failure((void*)(port+pci_io_base), val);
return val;
}
static inline void eeh_outb(u8 val, unsigned long port) {
if (!_IO_IS_ISA(port) || _IO_HAS_ISA_BUS)
return out_8((u8 *)(port+pci_io_base), val);
}
static inline u16 eeh_inw(unsigned long port) {
u16 val;
if (_IO_IS_ISA(port) && !_IO_HAS_ISA_BUS)
return ~0;
val = in_le16((u16 *)(port+pci_io_base));
if (!_IO_IS_ISA(port) && EEH_POSSIBLE_IO_ERROR(val))
return eeh_check_failure((void*)(port+pci_io_base), val);
return val;
}
static inline void eeh_outw(u16 val, unsigned long port) {
if (!_IO_IS_ISA(port) || _IO_HAS_ISA_BUS)
return out_le16((u16 *)(port+pci_io_base), val);
}
static inline u32 eeh_inl(unsigned long port) {
u32 val;
if (_IO_IS_ISA(port) && !_IO_HAS_ISA_BUS)
return ~0;
val = in_le32((u32 *)(port+pci_io_base));
if (!_IO_IS_ISA(port) && EEH_POSSIBLE_IO_ERROR(val))
return eeh_check_failure((void*)(port+pci_io_base), val);
return val;
}
static inline void eeh_outl(u32 val, unsigned long port) {
if (!_IO_IS_ISA(port) || _IO_HAS_ISA_BUS)
return out_le32((u32 *)(port+pci_io_base), val);
}
#endif /* _EEH_H */
|