1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#ifndef __ASM_SH_PGALLOC_H
#define __ASM_SH_PGALLOC_H
#include <asm/processor.h>
#include <linux/threads.h>
#include <linux/slab.h>
#include <linux/mm.h>
#define pgd_quicklist ((unsigned long *)0)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist ((unsigned long *)0)
#define pgtable_cache_size 0L
#define pmd_populate_kernel(mm, pmd, pte) \
set_pmd(pmd, __pmd(_PAGE_TABLE + __pa(pte)))
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
struct page *pte)
{
set_pmd(pmd, __pmd(_PAGE_TABLE + page_to_phys(pte)));
}
/*
* Allocate and free page tables.
*/
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
unsigned int pgd_size = (USER_PTRS_PER_PGD * sizeof(pgd_t));
pgd_t *pgd = (pgd_t *)kmalloc(pgd_size, GFP_KERNEL);
if (pgd)
memset(pgd, 0, pgd_size);
return pgd;
}
static inline void pgd_free(pgd_t *pgd)
{
kfree(pgd);
}
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
int count = 0;
pte_t *pte;
do {
pte = (pte_t *) __get_free_page(GFP_KERNEL | __GFP_REPEAT);
if (pte)
clear_page(pte);
else {
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(HZ);
}
} while (!pte && (count++ < 10));
return pte;
}
static inline struct page *pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
int count = 0;
struct page *pte;
do {
pte = alloc_pages(GFP_KERNEL, 0);
if (pte)
clear_page(page_address(pte));
else {
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(HZ);
}
} while (!pte && (count++ < 10));
return pte;
}
static inline void pte_free_kernel(pte_t *pte)
{
free_page((unsigned long)pte);
}
static inline void pte_free(struct page *pte)
{
__free_page(pte);
}
#define __pte_free_tlb(tlb,pte) tlb_remove_page((tlb),(pte))
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
#define pmd_alloc_one(mm, addr) ({ BUG(); ((pmd_t *)2); })
#define pmd_free(x) do { } while (0)
#define __pmd_free_tlb(tlb,x) do { } while (0)
#define pgd_populate(mm, pmd, pte) BUG()
#if defined(CONFIG_CPU_SH4)
#define PG_mapped PG_arch_1
/*
* For SH-4, we have our own implementation for ptep_get_and_clear
*/
static inline pte_t ptep_get_and_clear(pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(ptep);
if (!pte_not_present(pte)) {
struct page *page;
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
page = pfn_to_page(pfn);
if (!page->mapping
|| list_empty(&page->mapping->i_mmap_shared))
__clear_bit(PG_mapped, &page->flags);
}
}
return pte;
}
#else
static inline pte_t ptep_get_and_clear(pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(ptep);
return pte;
}
#endif
/*
* Following functions are same as generic ones.
*/
static inline int ptep_test_and_clear_young(pte_t *ptep)
{
pte_t pte = *ptep;
if (!pte_young(pte))
return 0;
set_pte(ptep, pte_mkold(pte));
return 1;
}
static inline int ptep_test_and_clear_dirty(pte_t *ptep)
{
pte_t pte = *ptep;
if (!pte_dirty(pte))
return 0;
set_pte(ptep, pte_mkclean(pte));
return 1;
}
static inline void ptep_set_wrprotect(pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte(ptep, pte_wrprotect(old_pte));
}
static inline void ptep_mkdirty(pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte(ptep, pte_mkdirty(old_pte));
}
#define check_pgt_cache() do { } while (0)
#endif /* __ASM_SH_PGALLOC_H */
|