1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __ASM_ARC_CMPXCHG_H
#define __ASM_ARC_CMPXCHG_H
#include <linux/types.h>
#include <asm/barrier.h>
#include <asm/smp.h>
#ifdef CONFIG_ARC_HAS_LLSC
static inline unsigned long
__cmpxchg(volatile void *ptr, unsigned long expected, unsigned long new)
{
unsigned long prev;
/*
* Explicit full memory barrier needed before/after as
* LLOCK/SCOND thmeselves don't provide any such semantics
*/
smp_mb();
__asm__ __volatile__(
"1: llock %0, [%1] \n"
" brne %0, %2, 2f \n"
" scond %3, [%1] \n"
" bnz 1b \n"
"2: \n"
: "=&r"(prev) /* Early clobber, to prevent reg reuse */
: "r"(ptr), /* Not "m": llock only supports reg direct addr mode */
"ir"(expected),
"r"(new) /* can't be "ir". scond can't take LIMM for "b" */
: "cc", "memory"); /* so that gcc knows memory is being written here */
smp_mb();
return prev;
}
#else
static inline unsigned long
__cmpxchg(volatile void *ptr, unsigned long expected, unsigned long new)
{
unsigned long flags;
int prev;
volatile unsigned long *p = ptr;
/*
* spin lock/unlock provide the needed smp_mb() before/after
*/
atomic_ops_lock(flags);
prev = *p;
if (prev == expected)
*p = new;
atomic_ops_unlock(flags);
return prev;
}
#endif /* CONFIG_ARC_HAS_LLSC */
#define cmpxchg(ptr, o, n) ((typeof(*(ptr)))__cmpxchg((ptr), \
(unsigned long)(o), (unsigned long)(n)))
/*
* Since not supported natively, ARC cmpxchg() uses atomic_ops_lock (UP/SMP)
* just to gaurantee semantics.
* atomic_cmpxchg() needs to use the same locks as it's other atomic siblings
* which also happens to be atomic_ops_lock.
*
* Thus despite semantically being different, implementation of atomic_cmpxchg()
* is same as cmpxchg().
*/
#define atomic_cmpxchg(v, o, n) ((int)cmpxchg(&((v)->counter), (o), (n)))
/*
* xchg (reg with memory) based on "Native atomic" EX insn
*/
static inline unsigned long __xchg(unsigned long val, volatile void *ptr,
int size)
{
extern unsigned long __xchg_bad_pointer(void);
switch (size) {
case 4:
smp_mb();
__asm__ __volatile__(
" ex %0, [%1] \n"
: "+r"(val)
: "r"(ptr)
: "memory");
smp_mb();
return val;
}
return __xchg_bad_pointer();
}
#define _xchg(ptr, with) ((typeof(*(ptr)))__xchg((unsigned long)(with), (ptr), \
sizeof(*(ptr))))
/*
* On ARC700, EX insn is inherently atomic, so by default "vanilla" xchg() need
* not require any locking. However there's a quirk.
* ARC lacks native CMPXCHG, thus emulated (see above), using external locking -
* incidently it "reuses" the same atomic_ops_lock used by atomic APIs.
* Now, llist code uses cmpxchg() and xchg() on same data, so xchg() needs to
* abide by same serializing rules, thus ends up using atomic_ops_lock as well.
*
* This however is only relevant if SMP and/or ARC lacks LLSC
* if (UP or LLSC)
* xchg doesn't need serialization
* else <==> !(UP or LLSC) <==> (!UP and !LLSC) <==> (SMP and !LLSC)
* xchg needs serialization
*/
#if !defined(CONFIG_ARC_HAS_LLSC) && defined(CONFIG_SMP)
#define xchg(ptr, with) \
({ \
unsigned long flags; \
typeof(*(ptr)) old_val; \
\
atomic_ops_lock(flags); \
old_val = _xchg(ptr, with); \
atomic_ops_unlock(flags); \
old_val; \
})
#else
#define xchg(ptr, with) _xchg(ptr, with)
#endif
/*
* "atomic" variant of xchg()
* REQ: It needs to follow the same serialization rules as other atomic_xxx()
* Since xchg() doesn't always do that, it would seem that following defintion
* is incorrect. But here's the rationale:
* SMP : Even xchg() takes the atomic_ops_lock, so OK.
* LLSC: atomic_ops_lock are not relevent at all (even if SMP, since LLSC
* is natively "SMP safe", no serialization required).
* UP : other atomics disable IRQ, so no way a difft ctxt atomic_xchg()
* could clobber them. atomic_xchg() itself would be 1 insn, so it
* can't be clobbered by others. Thus no serialization required when
* atomic_xchg is involved.
*/
#define atomic_xchg(v, new) (xchg(&((v)->counter), new))
#endif
|