1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: dpc.c
*
* Purpose: handle dpc rx functions
*
* Author: Lyndon Chen
*
* Date: May 20, 2003
*
* Functions:
* device_receive_frame - Rcv 802.11 frame function
* s_bHandleRxEncryption- Rcv decrypted data via on-fly
* s_byGetRateIdx- get rate index
* s_vGetDASA- get data offset
* s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
*
* Revision History:
*
*/
#include "dpc.h"
#include "device.h"
#include "rxtx.h"
#include "tether.h"
#include "card.h"
#include "bssdb.h"
#include "mac.h"
#include "baseband.h"
#include "michael.h"
#include "tkip.h"
#include "wctl.h"
#include "rf.h"
#include "iowpa.h"
#include "datarate.h"
#include "usbpipe.h"
//static int msglevel =MSG_LEVEL_DEBUG;
static int msglevel =MSG_LEVEL_INFO;
static const u8 acbyRxRate[MAX_RATE] =
{2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
static u8 s_byGetRateIdx(u8 byRate);
static
void
s_vGetDASA(
u8 * pbyRxBufferAddr,
unsigned int *pcbHeaderSize,
struct ethhdr *psEthHeader
);
static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
u32 *pcbHeadSize);
static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
/*+
*
* Description:
* Translate Rcv 802.11 header to 802.3 header with Rx buffer
*
* Parameters:
* In:
* pDevice
* dwRxBufferAddr - Address of Rcv Buffer
* cbPacketSize - Rcv Packet size
* bIsWEP - If Rcv with WEP
* Out:
* pcbHeaderSize - 802.11 header size
*
* Return Value: None
*
-*/
static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
u32 *pcbHeadSize)
{
u8 *pbyRxBuffer;
u32 cbHeaderSize = 0;
u16 *pwType;
struct ieee80211_hdr *pMACHeader;
int ii;
pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
s_vGetDASA((u8 *)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
if (bIsWEP) {
if (bExtIV) {
// strip IV&ExtIV , add 8 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
} else {
// strip IV , add 4 byte
cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
}
}
else {
cbHeaderSize += WLAN_HDR_ADDR3_LEN;
};
pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_Bridgetunnel)) {
cbHeaderSize += 6;
} else if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_RFC1042)) {
cbHeaderSize += 6;
pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
(*pwType == cpu_to_le16(0xF380))) {
cbHeaderSize -= 8;
pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
}
else {
cbHeaderSize -= 2;
pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
if (bIsWEP) {
if (bExtIV) {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8); // 8 is IV&ExtIV
} else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4); // 4 is IV
}
}
else {
*pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
}
}
cbHeaderSize -= (ETH_ALEN * 2);
pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
for (ii = 0; ii < ETH_ALEN; ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.h_dest[ii];
for (ii = 0; ii < ETH_ALEN; ii++)
*pbyRxBuffer++ = pDevice->sRxEthHeader.h_source[ii];
*pcbHeadSize = cbHeaderSize;
}
static u8 s_byGetRateIdx(u8 byRate)
{
u8 byRateIdx;
for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
return byRateIdx;
}
return 0;
}
static
void
s_vGetDASA (
u8 * pbyRxBufferAddr,
unsigned int *pcbHeaderSize,
struct ethhdr *psEthHeader
)
{
unsigned int cbHeaderSize = 0;
struct ieee80211_hdr *pMACHeader;
int ii;
pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
if ((pMACHeader->frame_control & FC_TODS) == 0) {
if (pMACHeader->frame_control & FC_FROMDS) {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->h_dest[ii] =
pMACHeader->addr1[ii];
psEthHeader->h_source[ii] =
pMACHeader->addr3[ii];
}
} else {
/* IBSS mode */
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->h_dest[ii] =
pMACHeader->addr1[ii];
psEthHeader->h_source[ii] =
pMACHeader->addr2[ii];
}
}
} else {
/* Is AP mode.. */
if (pMACHeader->frame_control & FC_FROMDS) {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->h_dest[ii] =
pMACHeader->addr3[ii];
psEthHeader->h_source[ii] =
pMACHeader->addr4[ii];
cbHeaderSize += 6;
}
} else {
for (ii = 0; ii < ETH_ALEN; ii++) {
psEthHeader->h_dest[ii] =
pMACHeader->addr3[ii];
psEthHeader->h_source[ii] =
pMACHeader->addr2[ii];
}
}
};
*pcbHeaderSize = cbHeaderSize;
}
int RXbBulkInProcessData(struct vnt_private *pDevice, struct vnt_rcb *pRCB,
unsigned long BytesToIndicate)
{
struct net_device_stats *pStats = &pDevice->stats;
struct sk_buff *skb;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_rx_mgmt *pRxPacket = &pMgmt->sRxPacket;
struct ieee80211_hdr *p802_11Header;
u8 *pbyRsr, *pbyNewRsr, *pbyRSSI, *pbyFrame;
u64 *pqwTSFTime;
u32 bDeFragRx = false;
u32 cbHeaderOffset, cbIVOffset;
u32 FrameSize;
u16 wEtherType = 0;
s32 iSANodeIndex = -1;
int ii;
u8 *pbyRxSts, *pbyRxRate, *pbySQ, *pby3SQ;
u32 cbHeaderSize;
PSKeyItem pKey = NULL;
u16 wRxTSC15_0 = 0;
u32 dwRxTSC47_16 = 0;
/* signed long ldBm = 0; */
int bIsWEP = false; int bExtIV = false;
u32 dwWbkStatus;
struct vnt_rcb *pRCBIndicate = pRCB;
u8 *pbyDAddress;
u16 *pwPLCP_Length;
u8 abyVaildRate[MAX_RATE]
= {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
u16 wPLCPwithPadding;
struct ieee80211_hdr *pMACHeader;
int bRxeapol_key = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");
skb = pRCB->skb;
/* [31:16]RcvByteCount ( not include 4-byte Status ) */
dwWbkStatus = *((u32 *)(skb->data));
FrameSize = dwWbkStatus >> 16;
FrameSize += 4;
if (BytesToIndicate != FrameSize) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"------- WRONG Length 1\n");
pStats->rx_frame_errors++;
return false;
}
if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
// Frame Size error drop this packet.
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
pStats->rx_frame_errors++;
return false;
}
pbyDAddress = (u8 *)(skb->data);
pbyRxSts = pbyDAddress+4;
pbyRxRate = pbyDAddress+5;
//real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
//if SQ3 the range is 24~27, if no SQ3 the range is 20~23
//real Frame size in PLCPLength field.
pwPLCP_Length = (u16 *) (pbyDAddress + 6);
//Fix hardware bug => PLCP_Length error
if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
(BytesToIndicate < (*pwPLCP_Length)) ) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
pStats->rx_frame_errors++;
return false;
}
for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
if ( *pbyRxRate == abyVaildRate[ii] ) {
break;
}
}
if ( ii==MAX_RATE ) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
return false;
}
wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;
pqwTSFTime = (u64 *)(pbyDAddress + 8 + wPLCPwithPadding);
if(pDevice->byBBType == BB_TYPE_11G) {
pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
pbySQ = pby3SQ;
}
else {
pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
pby3SQ = pbySQ;
}
pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;
FrameSize = *pwPLCP_Length;
pbyFrame = pbyDAddress + 8;
pMACHeader = (struct ieee80211_hdr *) pbyFrame;
//mike add: to judge if current AP is activated?
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) {
if (ether_addr_equal(pMgmt->abyCurrBSSID, pMACHeader->addr2)) {
if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
}
}
}
if (!is_multicast_ether_addr(pMACHeader->addr1)) {
if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (struct ieee80211_hdr *) pbyFrame)) {
return false;
}
if (!ether_addr_equal(pDevice->abyCurrentNetAddr, pMACHeader->addr1)) {
return false;
}
}
// Use for TKIP MIC
s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);
if (ether_addr_equal((u8 *)pDevice->sRxEthHeader.h_source,
pDevice->abyCurrentNetAddr))
return false;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
// get SA NodeIndex
if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p802_11Header->addr2), &iSANodeIndex)) {
pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
}
}
}
if (IS_FC_WEP(pbyFrame)) {
bool bRxDecryOK = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
bIsWEP = true;
bRxDecryOK = s_bHandleRxEncryption(pDevice, pbyFrame, FrameSize,
pbyRsr, pbyNewRsr, &pKey, &bExtIV, &wRxTSC15_0, &dwRxTSC47_16);
if (bRxDecryOK) {
if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
}
return false;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
return false;
}
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
FrameSize -= 8; // Message Integrity Code
else
FrameSize -= 4; // 4 is ICV
}
//
// RX OK
//
/* remove the FCS/CRC length */
FrameSize -= ETH_FCS_LEN;
if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
(IS_FRAGMENT_PKT((pbyFrame)))
) {
// defragment
bDeFragRx = WCTLbHandleFragment(pDevice, (struct ieee80211_hdr *) (pbyFrame), FrameSize, bIsWEP, bExtIV);
if (bDeFragRx) {
// defrag complete
// TODO skb, pbyFrame
skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
pbyFrame = skb->data + 8;
}
else {
return false;
}
}
//
// Management & Control frame Handle
//
if ((IS_TYPE_DATA((pbyFrame))) == false) {
// Handle Control & Manage Frame
if (IS_TYPE_MGMT((pbyFrame))) {
u8 * pbyData1;
u8 * pbyData2;
pRxPacket = &(pRCB->sMngPacket);
pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
pRxPacket->cbMPDULen = FrameSize;
pRxPacket->uRSSI = *pbyRSSI;
pRxPacket->bySQ = *pbySQ;
pRxPacket->qwLocalTSF = cpu_to_le64(*pqwTSFTime);
if (bIsWEP) {
// strip IV
pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
for (ii = 0; ii < (FrameSize - 4); ii++) {
*pbyData1 = *pbyData2;
pbyData1++;
pbyData2++;
}
}
pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
if ( *pbyRxSts == 0 ) {
//Discard beacon packet which channel is 0
if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
(WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
return false;
}
}
pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
//
// Insert the RCB in the Recv Mng list
//
EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
pDevice->NumRecvMngList++;
if ( bDeFragRx == false) {
pRCB->Ref++;
}
if (pDevice->bIsRxMngWorkItemQueued == false) {
pDevice->bIsRxMngWorkItemQueued = true;
schedule_work(&pDevice->rx_mng_work_item);
}
}
else {
// Control Frame
};
return false;
}
else {
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
//In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
if ( !(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
}
else {
// discard DATA packet while not associate || BSSID error
if ((pDevice->bLinkPass == false) ||
!(*pbyRsr & RSR_BSSIDOK)) {
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
//mike add:station mode check eapol-key challenge--->
{
u8 Protocol_Version; //802.1x Authentication
u8 Packet_Type; //802.1x Authentication
u8 Descriptor_type;
u16 Key_info;
if (bIsWEP)
cbIVOffset = 8;
else
cbIVOffset = 0;
wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
skb->data[cbIVOffset + 8 + 24 + 6 + 1];
Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
if (wEtherType == ETH_P_PAE) { //Protocol Type in LLC-Header
if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
(Packet_Type==3)) { //802.1x OR eapol-key challenge frame receive
bRxeapol_key = true;
Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
if(Descriptor_type==2) { //RSN
// printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
}
else if(Descriptor_type==254) {
// printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
}
}
}
}
//mike add:station mode check eapol-key challenge<---
}
}
// Data frame Handle
if (pDevice->bEnablePSMode) {
if (IS_FC_MOREDATA((pbyFrame))) {
if (*pbyRsr & RSR_ADDROK) {
//PSbSendPSPOLL((PSDevice)pDevice);
}
}
else {
if (pMgmt->bInTIMWake == true) {
pMgmt->bInTIMWake = false;
}
}
}
// ++++++++ For BaseBand Algorithm +++++++++++++++
pDevice->uCurrRSSI = *pbyRSSI;
pDevice->byCurrSQ = *pbySQ;
// todo
/*
if ((*pbyRSSI != 0) &&
(pMgmt->pCurrBSS!=NULL)) {
RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
// Monitor if RSSI is too strong.
pMgmt->pCurrBSS->byRSSIStatCnt++;
pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
pMgmt->pCurrBSS->ldBmMAX =
max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
}
}
}
*/
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
FrameSize -= 8; //MIC
}
}
//--------------------------------------------------------------------------------
// Soft MIC
if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
if (bIsWEP) {
u32 * pdwMIC_L;
u32 * pdwMIC_R;
u32 dwMIC_Priority;
u32 dwMICKey0 = 0, dwMICKey1 = 0;
u32 dwLocalMIC_L = 0;
u32 dwLocalMIC_R = 0;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
}
else {
if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
} else if ((pKey->dwKeyIndex & BIT28) == 0) {
dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
} else {
dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
}
}
MIC_vInit(dwMICKey0, dwMICKey1);
MIC_vAppend((u8 *)&(pDevice->sRxEthHeader.h_dest[0]), 12);
dwMIC_Priority = 0;
MIC_vAppend((u8 *)&dwMIC_Priority, 4);
// 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
MIC_vAppend((u8 *)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
FrameSize - WLAN_HDR_ADDR3_LEN - 8);
MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
MIC_vUnInit();
pdwMIC_L = (u32 *)(skb->data + 8 + FrameSize);
pdwMIC_R = (u32 *)(skb->data + 8 + FrameSize + 4);
if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
(pDevice->bRxMICFail == true)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
pDevice->bRxMICFail = false;
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
//send event to wpa_supplicant
//if(pDevice->bWPASuppWextEnabled == true)
{
union iwreq_data wrqu;
struct iw_michaelmicfailure ev;
int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
memset(&ev, 0, sizeof(ev));
ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
ev.flags |= IW_MICFAILURE_PAIRWISE;
} else {
ev.flags |= IW_MICFAILURE_GROUP;
}
ev.src_addr.sa_family = ARPHRD_ETHER;
memcpy(ev.src_addr.sa_data, pMACHeader->addr2, ETH_ALEN);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = sizeof(ev);
PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
}
return false;
}
}
} //---end of SOFT MIC-----------------------------------------------------------------------
// ++++++++++ Reply Counter Check +++++++++++++
if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
(pKey->byCipherSuite == KEY_CTL_CCMP))) {
if (bIsWEP) {
u16 wLocalTSC15_0 = 0;
u32 dwLocalTSC47_16 = 0;
unsigned long long RSC = 0;
// endian issues
RSC = *((unsigned long long *) &(pKey->KeyRSC));
wLocalTSC15_0 = (u16) RSC;
dwLocalTSC47_16 = (u32) (RSC>>16);
RSC = dwRxTSC47_16;
RSC <<= 16;
RSC += wRxTSC15_0;
memcpy(&(pKey->KeyRSC), &RSC, sizeof(u64));
if (pDevice->vnt_mgmt.eCurrMode == WMAC_MODE_ESS_STA &&
pDevice->vnt_mgmt.eCurrState == WMAC_STATE_ASSOC) {
/* check RSC */
if ( (wRxTSC15_0 < wLocalTSC15_0) &&
(dwRxTSC47_16 <= dwLocalTSC47_16) &&
!((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
}
return false;
}
}
}
} // ----- End of Reply Counter Check --------------------------
s_vProcessRxMACHeader(pDevice, (u8 *)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
FrameSize -= cbHeaderOffset;
cbHeaderOffset += 8; // 8 is Rcv buffer header
// Null data, framesize = 12
if (FrameSize < 12)
return false;
skb->data += cbHeaderOffset;
skb->tail += cbHeaderOffset;
skb_put(skb, FrameSize);
skb->protocol=eth_type_trans(skb, skb->dev);
skb->ip_summed=CHECKSUM_NONE;
pStats->rx_bytes +=skb->len;
pStats->rx_packets++;
netif_rx(skb);
if (bDeFragRx) {
if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
pDevice->dev->name);
}
return false;
}
return true;
}
static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u32 PayloadLen = FrameSize;
u8 *pbyIV;
u8 byKeyIdx;
PSKeyItem pKey = NULL;
u8 byDecMode = KEY_CTL_WEP;
*pwRxTSC15_0 = 0;
*pdwRxTSC47_16 = 0;
pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
pbyIV += 6; // 6 is 802.11 address4
PayloadLen -= 6;
}
byKeyIdx = (*(pbyIV+3) & 0xc0);
byKeyIdx >>= 6;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
(pMgmt->byCSSPK != KEY_CTL_NONE)) {
// unicast pkt use pairwise key
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == true) {
if (pMgmt->byCSSPK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
} else {
// use group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
if (pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
}
}
// our WEP only support Default Key
if (pKey == NULL) {
// use default group key
KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
if (pMgmt->byCSSGK == KEY_CTL_TKIP)
byDecMode = KEY_CTL_TKIP;
else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
byDecMode = KEY_CTL_CCMP;
}
*pKeyOut = pKey;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
if (pKey == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
return false;
}
if (byDecMode != pKey->byCipherSuite) {
*pKeyOut = NULL;
return false;
}
if (byDecMode == KEY_CTL_WEP) {
// handle WEP
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
(((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true)) {
// Software WEP
// 1. 3253A
// 2. WEP 256
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
memcpy(pDevice->abyPRNG, pbyIV, 3);
memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
}
}
} else if ((byDecMode == KEY_CTL_TKIP) ||
(byDecMode == KEY_CTL_CCMP)) {
// TKIP/AES
PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
*pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
if (byDecMode == KEY_CTL_TKIP) {
*pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
} else {
*pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
if ((byDecMode == KEY_CTL_TKIP) &&
(pDevice->byLocalID <= REV_ID_VT3253_A1)) {
// Software TKIP
// 1. 3253 A
struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
*pbyNewRsr |= NEWRSR_DECRYPTOK;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
}
}
}// end of TKIP/AES
if ((*(pbyIV+3) & 0x20) != 0)
*pbExtIV = true;
return true;
}
void RXvWorkItem(struct work_struct *work)
{
struct vnt_private *priv =
container_of(work, struct vnt_private, read_work_item);
int status;
struct vnt_rcb *rcb = NULL;
unsigned long flags;
if (priv->Flags & fMP_DISCONNECTED)
return;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
spin_lock_irqsave(&priv->lock, flags);
while ((priv->Flags & fMP_POST_READS) && MP_IS_READY(priv) &&
(priv->NumRecvFreeList != 0)) {
rcb = priv->FirstRecvFreeList;
priv->NumRecvFreeList--;
DequeueRCB(priv->FirstRecvFreeList, priv->LastRecvFreeList);
status = PIPEnsBulkInUsbRead(priv, rcb);
}
priv->bIsRxWorkItemQueued = false;
spin_unlock_irqrestore(&priv->lock, flags);
}
void RXvFreeRCB(struct vnt_rcb *rcb, int re_alloc_skb)
{
struct vnt_private *priv = rcb->pDevice;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");
if (re_alloc_skb == false) {
kfree_skb(rcb->skb);
re_alloc_skb = true;
}
if (re_alloc_skb == true) {
rcb->skb = netdev_alloc_skb(priv->dev, priv->rx_buf_sz);
/* TODO error handling */
if (!rcb->skb) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR
" Failed to re-alloc rx skb\n");
}
}
/* Insert the RCB back in the Recv free list */
EnqueueRCB(priv->FirstRecvFreeList, priv->LastRecvFreeList, rcb);
priv->NumRecvFreeList++;
if ((priv->Flags & fMP_POST_READS) && MP_IS_READY(priv) &&
(priv->bIsRxWorkItemQueued == false)) {
priv->bIsRxWorkItemQueued = true;
schedule_work(&priv->read_work_item);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",
priv->NumRecvFreeList, priv->NumRecvMngList);
}
void RXvMngWorkItem(struct work_struct *work)
{
struct vnt_private *pDevice =
container_of(work, struct vnt_private, rx_mng_work_item);
struct vnt_rcb *pRCB = NULL;
struct vnt_rx_mgmt *pRxPacket;
int bReAllocSkb = false;
unsigned long flags;
if (pDevice->Flags & fMP_DISCONNECTED)
return;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");
while (pDevice->NumRecvMngList!=0)
{
spin_lock_irqsave(&pDevice->lock, flags);
pRCB = pDevice->FirstRecvMngList;
pDevice->NumRecvMngList--;
DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
spin_unlock_irqrestore(&pDevice->lock, flags);
if(!pRCB){
break;
}
pRxPacket = &(pRCB->sMngPacket);
vMgrRxManagePacket(pDevice, &pDevice->vnt_mgmt, pRxPacket);
pRCB->Ref--;
if (pRCB->Ref == 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",
pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
spin_lock_irqsave(&pDevice->lock, flags);
RXvFreeRCB(pRCB, bReAllocSkb);
spin_unlock_irqrestore(&pDevice->lock, flags);
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
}
}
pDevice->bIsRxMngWorkItemQueued = false;
}
|