1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the ADI BSD license or the GPL-2 (or later)
*/
#include <linux/linkage.h>
#define CARRY AC0
#ifdef CONFIG_ARITHMETIC_OPS_L1
.section .l1.text
#else
.text
#endif
ENTRY(___udivsi3)
CC = R0 < R1 (IU); /* If X < Y, always return 0 */
IF CC JUMP .Lreturn_ident;
R2 = R1 << 16;
CC = R2 <= R0 (IU);
IF CC JUMP .Lidents;
R2 = R0 >> 31; /* if X is a 31-bit number */
R3 = R1 >> 15; /* and Y is a 15-bit number */
R2 = R2 | R3; /* then it's okay to use the DIVQ builtins (fallthrough to fast)*/
CC = R2;
IF CC JUMP .Ly_16bit;
/* METHOD 1: FAST DIVQ
We know we have a 31-bit dividend, and 15-bit divisor so we can use the
simple divq approach (first setting AQ to 0 - implying unsigned division,
then 16 DIVQ's).
*/
AQ = CC; /* Clear AQ (CC==0) */
/* ISR States: When dividing two integers (32.0/16.0) using divide primitives,
we need to shift the dividend one bit to the left.
We have already checked that we have a 31-bit number so we are safe to do
that.
*/
R0 <<= 1;
DIVQ(R0, R1); // 1
DIVQ(R0, R1); // 2
DIVQ(R0, R1); // 3
DIVQ(R0, R1); // 4
DIVQ(R0, R1); // 5
DIVQ(R0, R1); // 6
DIVQ(R0, R1); // 7
DIVQ(R0, R1); // 8
DIVQ(R0, R1); // 9
DIVQ(R0, R1); // 10
DIVQ(R0, R1); // 11
DIVQ(R0, R1); // 12
DIVQ(R0, R1); // 13
DIVQ(R0, R1); // 14
DIVQ(R0, R1); // 15
DIVQ(R0, R1); // 16
R0 = R0.L (Z);
RTS;
.Ly_16bit:
/* We know that the upper 17 bits of Y might have bits set,
** or that the sign bit of X might have a bit. If Y is a
** 16-bit number, but not bigger, then we can use the builtins
** with a post-divide correction.
** R3 currently holds Y>>15, which means R3's LSB is the
** bit we're interested in.
*/
/* According to the ISR, to use the Divide primitives for
** unsigned integer divide, the useable range is 31 bits
*/
CC = ! BITTST(R0, 31);
/* IF condition is true we can scale our inputs and use the divide primitives,
** with some post-adjustment
*/
R3 += -1; /* if so, Y is 0x00008nnn */
CC &= AZ;
/* If condition is true we can scale our inputs and use the divide primitives,
** with some post-adjustment
*/
R3 = R1 >> 1; /* Pre-scaled divisor for primitive case */
R2 = R0 >> 16;
R2 = R3 - R2; /* shifted divisor < upper 16 bits of dividend */
CC &= CARRY;
IF CC JUMP .Lshift_and_correct;
/* Fall through to the identities */
/* METHOD 2: identities and manual calculation
We are not able to use the divide primites, but may still catch some special
cases.
*/
.Lidents:
/* Test for common identities. Value to be returned is placed in R2. */
CC = R0 == 0; /* 0/Y => 0 */
IF CC JUMP .Lreturn_r0;
CC = R0 == R1; /* X==Y => 1 */
IF CC JUMP .Lreturn_ident;
CC = R1 == 1; /* X/1 => X */
IF CC JUMP .Lreturn_ident;
R2.L = ONES R1;
R2 = R2.L (Z);
CC = R2 == 1;
IF CC JUMP .Lpower_of_two;
[--SP] = (R7:5); /* Push registers R5-R7 */
/* Idents don't match. Go for the full operation. */
R6 = 2; /* assume we'll shift two */
R3 = 1;
P2 = R1;
/* If either R0 or R1 have sign set, */
/* divide them by two, and note it's */
/* been done. */
CC = R1 < 0;
R2 = R1 >> 1;
IF CC R1 = R2; /* Possibly-shifted R1 */
IF !CC R6 = R3; /* R1 doesn't, so at most 1 shifted */
P0 = 0;
R3 = -R1;
[--SP] = R3;
R2 = R0 >> 1;
R2 = R0 >> 1;
CC = R0 < 0;
IF CC P0 = R6; /* Number of values divided */
IF !CC R2 = R0; /* Shifted R0 */
/* P0 is 0, 1 (NR/=2) or 2 (NR/=2, DR/=2) */
/* r2 holds Copy dividend */
R3 = 0; /* Clear partial remainder */
R7 = 0; /* Initialise quotient bit */
P1 = 32; /* Set loop counter */
LSETUP(.Lulst, .Lulend) LC0 = P1; /* Set loop counter */
.Lulst: R6 = R2 >> 31; /* R6 = sign bit of R2, for carry */
R2 = R2 << 1; /* Shift 64 bit dividend up by 1 bit */
R3 = R3 << 1 || R5 = [SP];
R3 = R3 | R6; /* Include any carry */
CC = R7 < 0; /* Check quotient(AQ) */
/* If AQ==0, we'll sub divisor */
IF CC R5 = R1; /* and if AQ==1, we'll add it. */
R3 = R3 + R5; /* Add/sub divsor to partial remainder */
R7 = R3 ^ R1; /* Generate next quotient bit */
R5 = R7 >> 31; /* Get AQ */
BITTGL(R5, 0); /* Invert it, to get what we'll shift */
.Lulend: R2 = R2 + R5; /* and "shift" it in. */
CC = P0 == 0; /* Check how many inputs we shifted */
IF CC JUMP .Lno_mult; /* if none... */
R6 = R2 << 1;
CC = P0 == 1;
IF CC R2 = R6; /* if 1, Q = Q*2 */
IF !CC R1 = P2; /* if 2, restore stored divisor */
R3 = R2; /* Copy of R2 */
R3 *= R1; /* Q * divisor */
R5 = R0 - R3; /* Z = (dividend - Q * divisor) */
CC = R1 <= R5 (IU); /* Check if divisor <= Z? */
R6 = CC; /* if yes, R6 = 1 */
R2 = R2 + R6; /* if yes, add one to quotient(Q) */
.Lno_mult:
SP += 4;
(R7:5) = [SP++]; /* Pop registers R5-R7 */
R0 = R2; /* Store quotient */
RTS;
.Lreturn_ident:
CC = R0 < R1 (IU); /* If X < Y, always return 0 */
R2 = 0;
IF CC JUMP .Ltrue_return_ident;
R2 = -1 (X); /* X/0 => 0xFFFFFFFF */
CC = R1 == 0;
IF CC JUMP .Ltrue_return_ident;
R2 = -R2; /* R2 now 1 */
CC = R0 == R1; /* X==Y => 1 */
IF CC JUMP .Ltrue_return_ident;
R2 = R0; /* X/1 => X */
/*FALLTHRU*/
.Ltrue_return_ident:
R0 = R2;
.Lreturn_r0:
RTS;
.Lpower_of_two:
/* Y has a single bit set, which means it's a power of two.
** That means we can perform the division just by shifting
** X to the right the appropriate number of bits
*/
/* signbits returns the number of sign bits, minus one.
** 1=>30, 2=>29, ..., 0x40000000=>0. Which means we need
** to shift right n-signbits spaces. It also means 0x80000000
** is a special case, because that *also* gives a signbits of 0
*/
R2 = R0 >> 31;
CC = R1 < 0;
IF CC JUMP .Ltrue_return_ident;
R1.l = SIGNBITS R1;
R1 = R1.L (Z);
R1 += -30;
R0 = LSHIFT R0 by R1.L;
RTS;
/* METHOD 3: PRESCALE AND USE THE DIVIDE PRIMITIVES WITH SOME POST-CORRECTION
Two scaling operations are required to use the divide primitives with a
divisor > 0x7FFFF.
Firstly (as in method 1) we need to shift the dividend 1 to the left for
integer division.
Secondly we need to shift both the divisor and dividend 1 to the right so
both are in range for the primitives.
The left/right shift of the dividend does nothing so we can skip it.
*/
.Lshift_and_correct:
R2 = R0;
// R3 is already R1 >> 1
CC=!CC;
AQ = CC; /* Clear AQ, got here with CC = 0 */
DIVQ(R2, R3); // 1
DIVQ(R2, R3); // 2
DIVQ(R2, R3); // 3
DIVQ(R2, R3); // 4
DIVQ(R2, R3); // 5
DIVQ(R2, R3); // 6
DIVQ(R2, R3); // 7
DIVQ(R2, R3); // 8
DIVQ(R2, R3); // 9
DIVQ(R2, R3); // 10
DIVQ(R2, R3); // 11
DIVQ(R2, R3); // 12
DIVQ(R2, R3); // 13
DIVQ(R2, R3); // 14
DIVQ(R2, R3); // 15
DIVQ(R2, R3); // 16
/* According to the Instruction Set Reference:
To divide by a divisor > 0x7FFF,
1. prescale and perform divide to obtain quotient (Q) (done above),
2. multiply quotient by unscaled divisor (result M)
3. subtract the product from the divident to get an error (E = X - M)
4. if E < divisor (Y) subtract 1, if E > divisor (Y) add 1, else return quotient (Q)
*/
R3 = R2.L (Z); /* Q = X' / Y' */
R2 = R3; /* Preserve Q */
R2 *= R1; /* M = Q * Y */
R2 = R0 - R2; /* E = X - M */
R0 = R3; /* Copy Q into result reg */
/* Correction: If result of the multiply is negative, we overflowed
and need to correct the result by subtracting 1 from the result.*/
R3 = 0xFFFF (Z);
R2 = R2 >> 16; /* E >> 16 */
CC = R2 == R3;
R3 = 1 ;
R1 = R0 - R3;
IF CC R0 = R1;
RTS;
ENDPROC(___udivsi3)
|