1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2005-2017 Andes Technology Corporation
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/dma-noncoherent.h>
#include <linux/io.h>
#include <linux/cache.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/proc-fns.h>
/*
* This is the page table (2MB) covering uncached, DMA consistent allocations
*/
static pte_t *consistent_pte;
static DEFINE_RAW_SPINLOCK(consistent_lock);
/*
* VM region handling support.
*
* This should become something generic, handling VM region allocations for
* vmalloc and similar (ioremap, module space, etc).
*
* I envisage vmalloc()'s supporting vm_struct becoming:
*
* struct vm_struct {
* struct vm_region region;
* unsigned long flags;
* struct page **pages;
* unsigned int nr_pages;
* unsigned long phys_addr;
* };
*
* get_vm_area() would then call vm_region_alloc with an appropriate
* struct vm_region head (eg):
*
* struct vm_region vmalloc_head = {
* .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
* .vm_start = VMALLOC_START,
* .vm_end = VMALLOC_END,
* };
*
* However, vmalloc_head.vm_start is variable (typically, it is dependent on
* the amount of RAM found at boot time.) I would imagine that get_vm_area()
* would have to initialise this each time prior to calling vm_region_alloc().
*/
struct arch_vm_region {
struct list_head vm_list;
unsigned long vm_start;
unsigned long vm_end;
struct page *vm_pages;
};
static struct arch_vm_region consistent_head = {
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
.vm_start = CONSISTENT_BASE,
.vm_end = CONSISTENT_END,
};
static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head,
size_t size, int gfp)
{
unsigned long addr = head->vm_start, end = head->vm_end - size;
unsigned long flags;
struct arch_vm_region *c, *new;
new = kmalloc(sizeof(struct arch_vm_region), gfp);
if (!new)
goto out;
raw_spin_lock_irqsave(&consistent_lock, flags);
list_for_each_entry(c, &head->vm_list, vm_list) {
if ((addr + size) < addr)
goto nospc;
if ((addr + size) <= c->vm_start)
goto found;
addr = c->vm_end;
if (addr > end)
goto nospc;
}
found:
/*
* Insert this entry _before_ the one we found.
*/
list_add_tail(&new->vm_list, &c->vm_list);
new->vm_start = addr;
new->vm_end = addr + size;
raw_spin_unlock_irqrestore(&consistent_lock, flags);
return new;
nospc:
raw_spin_unlock_irqrestore(&consistent_lock, flags);
kfree(new);
out:
return NULL;
}
static struct arch_vm_region *vm_region_find(struct arch_vm_region *head,
unsigned long addr)
{
struct arch_vm_region *c;
list_for_each_entry(c, &head->vm_list, vm_list) {
if (c->vm_start == addr)
goto out;
}
c = NULL;
out:
return c;
}
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
gfp_t gfp, unsigned long attrs)
{
struct page *page;
struct arch_vm_region *c;
unsigned long order;
u64 mask = ~0ULL, limit;
pgprot_t prot = pgprot_noncached(PAGE_KERNEL);
if (!consistent_pte) {
pr_err("%s: not initialized\n", __func__);
dump_stack();
return NULL;
}
if (dev) {
mask = dev->coherent_dma_mask;
/*
* Sanity check the DMA mask - it must be non-zero, and
* must be able to be satisfied by a DMA allocation.
*/
if (mask == 0) {
dev_warn(dev, "coherent DMA mask is unset\n");
goto no_page;
}
}
/*
* Sanity check the allocation size.
*/
size = PAGE_ALIGN(size);
limit = (mask + 1) & ~mask;
if ((limit && size >= limit) ||
size >= (CONSISTENT_END - CONSISTENT_BASE)) {
pr_warn("coherent allocation too big "
"(requested %#x mask %#llx)\n", size, mask);
goto no_page;
}
order = get_order(size);
if (mask != 0xffffffff)
gfp |= GFP_DMA;
page = alloc_pages(gfp, order);
if (!page)
goto no_page;
/*
* Invalidate any data that might be lurking in the
* kernel direct-mapped region for device DMA.
*/
{
unsigned long kaddr = (unsigned long)page_address(page);
memset(page_address(page), 0, size);
cpu_dma_wbinval_range(kaddr, kaddr + size);
}
/*
* Allocate a virtual address in the consistent mapping region.
*/
c = vm_region_alloc(&consistent_head, size,
gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
if (c) {
pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
struct page *end = page + (1 << order);
c->vm_pages = page;
/*
* Set the "dma handle"
*/
*handle = page_to_phys(page);
do {
BUG_ON(!pte_none(*pte));
/*
* x86 does not mark the pages reserved...
*/
SetPageReserved(page);
set_pte(pte, mk_pte(page, prot));
page++;
pte++;
} while (size -= PAGE_SIZE);
/*
* Free the otherwise unused pages.
*/
while (page < end) {
__free_page(page);
page++;
}
return (void *)c->vm_start;
}
if (page)
__free_pages(page, order);
no_page:
*handle = ~0;
return NULL;
}
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
struct arch_vm_region *c;
unsigned long flags, addr;
pte_t *ptep;
size = PAGE_ALIGN(size);
raw_spin_lock_irqsave(&consistent_lock, flags);
c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
if (!c)
goto no_area;
if ((c->vm_end - c->vm_start) != size) {
pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
__func__, c->vm_end - c->vm_start, size);
dump_stack();
size = c->vm_end - c->vm_start;
}
ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
addr = c->vm_start;
do {
pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
unsigned long pfn;
ptep++;
addr += PAGE_SIZE;
if (!pte_none(pte) && pte_present(pte)) {
pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
/*
* x86 does not mark the pages reserved...
*/
ClearPageReserved(page);
__free_page(page);
continue;
}
}
pr_crit("%s: bad page in kernel page table\n", __func__);
} while (size -= PAGE_SIZE);
flush_tlb_kernel_range(c->vm_start, c->vm_end);
list_del(&c->vm_list);
raw_spin_unlock_irqrestore(&consistent_lock, flags);
kfree(c);
return;
no_area:
raw_spin_unlock_irqrestore(&consistent_lock, flags);
pr_err("%s: trying to free invalid coherent area: %p\n",
__func__, cpu_addr);
dump_stack();
}
/*
* Initialise the consistent memory allocation.
*/
static int __init consistent_init(void)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
int ret = 0;
do {
pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
if (!pmd) {
pr_err("%s: no pmd tables\n", __func__);
ret = -ENOMEM;
break;
}
/* The first level mapping may be created in somewhere.
* It's not necessary to warn here. */
/* WARN_ON(!pmd_none(*pmd)); */
pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
if (!pte) {
ret = -ENOMEM;
break;
}
consistent_pte = pte;
} while (0);
return ret;
}
core_initcall(consistent_init);
static inline void cache_op(phys_addr_t paddr, size_t size,
void (*fn)(unsigned long start, unsigned long end))
{
struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
unsigned offset = paddr & ~PAGE_MASK;
size_t left = size;
unsigned long start;
do {
size_t len = left;
if (PageHighMem(page)) {
void *addr;
if (offset + len > PAGE_SIZE) {
if (offset >= PAGE_SIZE) {
page += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
}
len = PAGE_SIZE - offset;
}
addr = kmap_atomic(page);
start = (unsigned long)(addr + offset);
fn(start, start + len);
kunmap_atomic(addr);
} else {
start = (unsigned long)phys_to_virt(paddr);
fn(start, start + size);
}
offset = 0;
page++;
left -= len;
} while (left);
}
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
switch (dir) {
case DMA_FROM_DEVICE:
break;
case DMA_TO_DEVICE:
case DMA_BIDIRECTIONAL:
cache_op(paddr, size, cpu_dma_wb_range);
break;
default:
BUG();
}
}
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
switch (dir) {
case DMA_TO_DEVICE:
break;
case DMA_FROM_DEVICE:
case DMA_BIDIRECTIONAL:
cache_op(paddr, size, cpu_dma_inval_range);
break;
default:
BUG();
}
}
|