1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*
* tools/testing/selftests/kvm/lib/x86.c
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include "test_util.h"
#include "kvm_util.h"
#include "x86.h"
#include "vmx.h"
/* Allocate memory regions for nested VMX tests.
*
* Input Args:
* vm - The VM to allocate guest-virtual addresses in.
*
* Output Args:
* p_vmx_gva - The guest virtual address for the struct vmx_pages.
*
* Return:
* Pointer to structure with the addresses of the VMX areas.
*/
struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
{
vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
/* Setup of a region of guest memory for the vmxon region. */
vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
/* Setup of a region of guest memory for a vmcs. */
vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
/* Setup of a region of guest memory for the MSR bitmap. */
vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
memset(vmx->msr_hva, 0, getpagesize());
/* Setup of a region of guest memory for the shadow VMCS. */
vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
memset(vmx->vmread_hva, 0, getpagesize());
vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
memset(vmx->vmwrite_hva, 0, getpagesize());
*p_vmx_gva = vmx_gva;
return vmx;
}
bool prepare_for_vmx_operation(struct vmx_pages *vmx)
{
uint64_t feature_control;
uint64_t required;
unsigned long cr0;
unsigned long cr4;
/*
* Ensure bits in CR0 and CR4 are valid in VMX operation:
* - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
* - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
*/
__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
/* Enable VMX operation */
cr4 |= X86_CR4_VMXE;
__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
/*
* Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
* Bit 0: Lock bit. If clear, VMXON causes a #GP.
* Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
* outside of SMX causes a #GP.
*/
required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
required |= FEATURE_CONTROL_LOCKED;
feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
if ((feature_control & required) != required)
wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
/* Enter VMX root operation. */
*(uint32_t *)(vmx->vmxon) = vmcs_revision();
if (vmxon(vmx->vmxon_gpa))
return false;
/* Load a VMCS. */
*(uint32_t *)(vmx->vmcs) = vmcs_revision();
if (vmclear(vmx->vmcs_gpa))
return false;
if (vmptrld(vmx->vmcs_gpa))
return false;
/* Setup shadow VMCS, do not load it yet. */
*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
if (vmclear(vmx->shadow_vmcs_gpa))
return false;
return true;
}
/*
* Initialize the control fields to the most basic settings possible.
*/
static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
{
vmwrite(VIRTUAL_PROCESSOR_ID, 0);
vmwrite(POSTED_INTR_NV, 0);
vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, 0))
vmwrite(CPU_BASED_VM_EXEC_CONTROL,
rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
else
vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
vmwrite(EXCEPTION_BITMAP, 0);
vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
vmwrite(CR3_TARGET_COUNT, 0);
vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
VM_ENTRY_IA32E_MODE); /* 64-bit guest */
vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
vmwrite(TPR_THRESHOLD, 0);
vmwrite(CR0_GUEST_HOST_MASK, 0);
vmwrite(CR4_GUEST_HOST_MASK, 0);
vmwrite(CR0_READ_SHADOW, get_cr0());
vmwrite(CR4_READ_SHADOW, get_cr4());
vmwrite(MSR_BITMAP, vmx->msr_gpa);
vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
}
/*
* Initialize the host state fields based on the current host state, with
* the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
* or vmresume.
*/
static inline void init_vmcs_host_state(void)
{
uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
vmwrite(HOST_ES_SELECTOR, get_es());
vmwrite(HOST_CS_SELECTOR, get_cs());
vmwrite(HOST_SS_SELECTOR, get_ss());
vmwrite(HOST_DS_SELECTOR, get_ds());
vmwrite(HOST_FS_SELECTOR, get_fs());
vmwrite(HOST_GS_SELECTOR, get_gs());
vmwrite(HOST_TR_SELECTOR, get_tr());
if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
vmwrite(HOST_CR0, get_cr0());
vmwrite(HOST_CR3, get_cr3());
vmwrite(HOST_CR4, get_cr4());
vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
vmwrite(HOST_TR_BASE,
get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
vmwrite(HOST_GDTR_BASE, get_gdt_base());
vmwrite(HOST_IDTR_BASE, get_idt_base());
vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
}
/*
* Initialize the guest state fields essentially as a clone of
* the host state fields. Some host state fields have fixed
* values, and we set the corresponding guest state fields accordingly.
*/
static inline void init_vmcs_guest_state(void *rip, void *rsp)
{
vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
vmwrite(GUEST_LDTR_SELECTOR, 0);
vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
vmwrite(GUEST_INTR_STATUS, 0);
vmwrite(GUEST_PML_INDEX, 0);
vmwrite(VMCS_LINK_POINTER, -1ll);
vmwrite(GUEST_IA32_DEBUGCTL, 0);
vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
vmwrite(GUEST_ES_LIMIT, -1);
vmwrite(GUEST_CS_LIMIT, -1);
vmwrite(GUEST_SS_LIMIT, -1);
vmwrite(GUEST_DS_LIMIT, -1);
vmwrite(GUEST_FS_LIMIT, -1);
vmwrite(GUEST_GS_LIMIT, -1);
vmwrite(GUEST_LDTR_LIMIT, -1);
vmwrite(GUEST_TR_LIMIT, 0x67);
vmwrite(GUEST_GDTR_LIMIT, 0xffff);
vmwrite(GUEST_IDTR_LIMIT, 0xffff);
vmwrite(GUEST_ES_AR_BYTES,
vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
vmwrite(GUEST_SS_AR_BYTES, 0xc093);
vmwrite(GUEST_DS_AR_BYTES,
vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_FS_AR_BYTES,
vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_GS_AR_BYTES,
vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
vmwrite(GUEST_TR_AR_BYTES, 0x8b);
vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
vmwrite(GUEST_ACTIVITY_STATE, 0);
vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
vmwrite(GUEST_ES_BASE, 0);
vmwrite(GUEST_CS_BASE, 0);
vmwrite(GUEST_SS_BASE, 0);
vmwrite(GUEST_DS_BASE, 0);
vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
vmwrite(GUEST_LDTR_BASE, 0);
vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
vmwrite(GUEST_DR7, 0x400);
vmwrite(GUEST_RSP, (uint64_t)rsp);
vmwrite(GUEST_RIP, (uint64_t)rip);
vmwrite(GUEST_RFLAGS, 2);
vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
}
void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
{
init_vmcs_control_fields(vmx);
init_vmcs_host_state();
init_vmcs_guest_state(guest_rip, guest_rsp);
}
|