File: io_ordering.txt

package info (click to toggle)
linux 4.9.228-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 814,720 kB
  • sloc: ansic: 14,532,095; asm: 289,032; makefile: 35,316; perl: 27,556; sh: 17,027; python: 13,390; cpp: 6,103; yacc: 4,354; lex: 2,440; awk: 1,212; pascal: 231; lisp: 218; sed: 21
file content (47 lines) | stat: -rw-r--r-- 1,923 bytes parent folder | download | duplicates (31)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
On some platforms, so-called memory-mapped I/O is weakly ordered.  On such
platforms, driver writers are responsible for ensuring that I/O writes to
memory-mapped addresses on their device arrive in the order intended.  This is
typically done by reading a 'safe' device or bridge register, causing the I/O
chipset to flush pending writes to the device before any reads are posted.  A
driver would usually use this technique immediately prior to the exit of a
critical section of code protected by spinlocks.  This would ensure that
subsequent writes to I/O space arrived only after all prior writes (much like a
memory barrier op, mb(), only with respect to I/O).

A more concrete example from a hypothetical device driver:

        ...
CPU A:  spin_lock_irqsave(&dev_lock, flags)
CPU A:  val = readl(my_status);
CPU A:  ...
CPU A:  writel(newval, ring_ptr);
CPU A:  spin_unlock_irqrestore(&dev_lock, flags)
        ...
CPU B:  spin_lock_irqsave(&dev_lock, flags)
CPU B:  val = readl(my_status);
CPU B:  ...
CPU B:  writel(newval2, ring_ptr);
CPU B:  spin_unlock_irqrestore(&dev_lock, flags)
        ...

In the case above, the device may receive newval2 before it receives newval,
which could cause problems.  Fixing it is easy enough though:

        ...
CPU A:  spin_lock_irqsave(&dev_lock, flags)
CPU A:  val = readl(my_status);
CPU A:  ...
CPU A:  writel(newval, ring_ptr);
CPU A:  (void)readl(safe_register); /* maybe a config register? */
CPU A:  spin_unlock_irqrestore(&dev_lock, flags)
        ...
CPU B:  spin_lock_irqsave(&dev_lock, flags)
CPU B:  val = readl(my_status);
CPU B:  ...
CPU B:  writel(newval2, ring_ptr);
CPU B:  (void)readl(safe_register); /* maybe a config register? */
CPU B:  spin_unlock_irqrestore(&dev_lock, flags)

Here, the reads from safe_register will cause the I/O chipset to flush any
pending writes before actually posting the read to the chipset, preventing
possible data corruption.