1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* This is the driver for the GMAC on-chip Ethernet controller for ST SoCs.
* DWC Ether MAC version 4.xx has been used for developing this code.
*
* This contains the functions to handle the dma.
*
* Copyright (C) 2015 STMicroelectronics Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* Author: Alexandre Torgue <alexandre.torgue@st.com>
*/
#include <linux/io.h>
#include "dwmac4.h"
#include "dwmac4_dma.h"
static void dwmac4_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi)
{
u32 value = readl(ioaddr + DMA_SYS_BUS_MODE);
int i;
pr_info("dwmac4: Master AXI performs %s burst length\n",
(value & DMA_SYS_BUS_FB) ? "fixed" : "any");
if (axi->axi_lpi_en)
value |= DMA_AXI_EN_LPI;
if (axi->axi_xit_frm)
value |= DMA_AXI_LPI_XIT_FRM;
value &= ~DMA_AXI_WR_OSR_LMT;
value |= (axi->axi_wr_osr_lmt & DMA_AXI_OSR_MAX) <<
DMA_AXI_WR_OSR_LMT_SHIFT;
value &= ~DMA_AXI_RD_OSR_LMT;
value |= (axi->axi_rd_osr_lmt & DMA_AXI_OSR_MAX) <<
DMA_AXI_RD_OSR_LMT_SHIFT;
/* Depending on the UNDEF bit the Master AXI will perform any burst
* length according to the BLEN programmed (by default all BLEN are
* set).
*/
for (i = 0; i < AXI_BLEN; i++) {
switch (axi->axi_blen[i]) {
case 256:
value |= DMA_AXI_BLEN256;
break;
case 128:
value |= DMA_AXI_BLEN128;
break;
case 64:
value |= DMA_AXI_BLEN64;
break;
case 32:
value |= DMA_AXI_BLEN32;
break;
case 16:
value |= DMA_AXI_BLEN16;
break;
case 8:
value |= DMA_AXI_BLEN8;
break;
case 4:
value |= DMA_AXI_BLEN4;
break;
}
}
writel(value, ioaddr + DMA_SYS_BUS_MODE);
}
static void dwmac4_dma_init_channel(void __iomem *ioaddr, int pbl,
u32 dma_tx_phy, u32 dma_rx_phy,
u32 channel)
{
u32 value;
/* set PBL for each channels. Currently we affect same configuration
* on each channel
*/
value = readl(ioaddr + DMA_CHAN_CONTROL(channel));
value = value | DMA_BUS_MODE_PBL;
writel(value, ioaddr + DMA_CHAN_CONTROL(channel));
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(channel));
value = value | (pbl << DMA_BUS_MODE_PBL_SHIFT);
writel(value, ioaddr + DMA_CHAN_TX_CONTROL(channel));
value = readl(ioaddr + DMA_CHAN_RX_CONTROL(channel));
value = value | (pbl << DMA_BUS_MODE_RPBL_SHIFT);
writel(value, ioaddr + DMA_CHAN_RX_CONTROL(channel));
/* Mask interrupts by writing to CSR7 */
writel(DMA_CHAN_INTR_DEFAULT_MASK, ioaddr + DMA_CHAN_INTR_ENA(channel));
writel(dma_tx_phy, ioaddr + DMA_CHAN_TX_BASE_ADDR(channel));
writel(dma_rx_phy, ioaddr + DMA_CHAN_RX_BASE_ADDR(channel));
}
static void dwmac4_dma_init(void __iomem *ioaddr, int pbl, int fb, int mb,
int aal, u32 dma_tx, u32 dma_rx, int atds)
{
u32 value = readl(ioaddr + DMA_SYS_BUS_MODE);
int i;
/* Set the Fixed burst mode */
if (fb)
value |= DMA_SYS_BUS_FB;
/* Mixed Burst has no effect when fb is set */
if (mb)
value |= DMA_SYS_BUS_MB;
if (aal)
value |= DMA_SYS_BUS_AAL;
writel(value, ioaddr + DMA_SYS_BUS_MODE);
for (i = 0; i < DMA_CHANNEL_NB_MAX; i++)
dwmac4_dma_init_channel(ioaddr, pbl, dma_tx, dma_rx, i);
}
static void _dwmac4_dump_dma_regs(void __iomem *ioaddr, u32 channel)
{
pr_debug(" Channel %d\n", channel);
pr_debug("\tDMA_CHAN_CONTROL, offset: 0x%x, val: 0x%x\n", 0,
readl(ioaddr + DMA_CHAN_CONTROL(channel)));
pr_debug("\tDMA_CHAN_TX_CONTROL, offset: 0x%x, val: 0x%x\n", 0x4,
readl(ioaddr + DMA_CHAN_TX_CONTROL(channel)));
pr_debug("\tDMA_CHAN_RX_CONTROL, offset: 0x%x, val: 0x%x\n", 0x8,
readl(ioaddr + DMA_CHAN_RX_CONTROL(channel)));
pr_debug("\tDMA_CHAN_TX_BASE_ADDR, offset: 0x%x, val: 0x%x\n", 0x14,
readl(ioaddr + DMA_CHAN_TX_BASE_ADDR(channel)));
pr_debug("\tDMA_CHAN_RX_BASE_ADDR, offset: 0x%x, val: 0x%x\n", 0x1c,
readl(ioaddr + DMA_CHAN_RX_BASE_ADDR(channel)));
pr_debug("\tDMA_CHAN_TX_END_ADDR, offset: 0x%x, val: 0x%x\n", 0x20,
readl(ioaddr + DMA_CHAN_TX_END_ADDR(channel)));
pr_debug("\tDMA_CHAN_RX_END_ADDR, offset: 0x%x, val: 0x%x\n", 0x28,
readl(ioaddr + DMA_CHAN_RX_END_ADDR(channel)));
pr_debug("\tDMA_CHAN_TX_RING_LEN, offset: 0x%x, val: 0x%x\n", 0x2c,
readl(ioaddr + DMA_CHAN_TX_RING_LEN(channel)));
pr_debug("\tDMA_CHAN_RX_RING_LEN, offset: 0x%x, val: 0x%x\n", 0x30,
readl(ioaddr + DMA_CHAN_RX_RING_LEN(channel)));
pr_debug("\tDMA_CHAN_INTR_ENA, offset: 0x%x, val: 0x%x\n", 0x34,
readl(ioaddr + DMA_CHAN_INTR_ENA(channel)));
pr_debug("\tDMA_CHAN_RX_WATCHDOG, offset: 0x%x, val: 0x%x\n", 0x38,
readl(ioaddr + DMA_CHAN_RX_WATCHDOG(channel)));
pr_debug("\tDMA_CHAN_SLOT_CTRL_STATUS, offset: 0x%x, val: 0x%x\n", 0x3c,
readl(ioaddr + DMA_CHAN_SLOT_CTRL_STATUS(channel)));
pr_debug("\tDMA_CHAN_CUR_TX_DESC, offset: 0x%x, val: 0x%x\n", 0x44,
readl(ioaddr + DMA_CHAN_CUR_TX_DESC(channel)));
pr_debug("\tDMA_CHAN_CUR_RX_DESC, offset: 0x%x, val: 0x%x\n", 0x4c,
readl(ioaddr + DMA_CHAN_CUR_RX_DESC(channel)));
pr_debug("\tDMA_CHAN_CUR_TX_BUF_ADDR, offset: 0x%x, val: 0x%x\n", 0x54,
readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR(channel)));
pr_debug("\tDMA_CHAN_CUR_RX_BUF_ADDR, offset: 0x%x, val: 0x%x\n", 0x5c,
readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR(channel)));
pr_debug("\tDMA_CHAN_STATUS, offset: 0x%x, val: 0x%x\n", 0x60,
readl(ioaddr + DMA_CHAN_STATUS(channel)));
}
static void dwmac4_dump_dma_regs(void __iomem *ioaddr)
{
int i;
pr_debug(" GMAC4 DMA registers\n");
for (i = 0; i < DMA_CHANNEL_NB_MAX; i++)
_dwmac4_dump_dma_regs(ioaddr, i);
}
static void dwmac4_rx_watchdog(void __iomem *ioaddr, u32 riwt)
{
int i;
for (i = 0; i < DMA_CHANNEL_NB_MAX; i++)
writel(riwt, ioaddr + DMA_CHAN_RX_WATCHDOG(i));
}
static void dwmac4_dma_chan_op_mode(void __iomem *ioaddr, int txmode,
int rxmode, u32 channel)
{
u32 mtl_tx_op, mtl_rx_op, mtl_rx_int;
/* Following code only done for channel 0, other channels not yet
* supported.
*/
mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(channel));
if (txmode == SF_DMA_MODE) {
pr_debug("GMAC: enable TX store and forward mode\n");
/* Transmit COE type 2 cannot be done in cut-through mode. */
mtl_tx_op |= MTL_OP_MODE_TSF;
} else {
pr_debug("GMAC: disabling TX SF (threshold %d)\n", txmode);
mtl_tx_op &= ~MTL_OP_MODE_TSF;
mtl_tx_op &= MTL_OP_MODE_TTC_MASK;
/* Set the transmit threshold */
if (txmode <= 32)
mtl_tx_op |= MTL_OP_MODE_TTC_32;
else if (txmode <= 64)
mtl_tx_op |= MTL_OP_MODE_TTC_64;
else if (txmode <= 96)
mtl_tx_op |= MTL_OP_MODE_TTC_96;
else if (txmode <= 128)
mtl_tx_op |= MTL_OP_MODE_TTC_128;
else if (txmode <= 192)
mtl_tx_op |= MTL_OP_MODE_TTC_192;
else if (txmode <= 256)
mtl_tx_op |= MTL_OP_MODE_TTC_256;
else if (txmode <= 384)
mtl_tx_op |= MTL_OP_MODE_TTC_384;
else
mtl_tx_op |= MTL_OP_MODE_TTC_512;
}
writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(channel));
mtl_rx_op = readl(ioaddr + MTL_CHAN_RX_OP_MODE(channel));
if (rxmode == SF_DMA_MODE) {
pr_debug("GMAC: enable RX store and forward mode\n");
mtl_rx_op |= MTL_OP_MODE_RSF;
} else {
pr_debug("GMAC: disable RX SF mode (threshold %d)\n", rxmode);
mtl_rx_op &= ~MTL_OP_MODE_RSF;
mtl_rx_op &= MTL_OP_MODE_RTC_MASK;
if (rxmode <= 32)
mtl_rx_op |= MTL_OP_MODE_RTC_32;
else if (rxmode <= 64)
mtl_rx_op |= MTL_OP_MODE_RTC_64;
else if (rxmode <= 96)
mtl_rx_op |= MTL_OP_MODE_RTC_96;
else
mtl_rx_op |= MTL_OP_MODE_RTC_128;
}
writel(mtl_rx_op, ioaddr + MTL_CHAN_RX_OP_MODE(channel));
/* Enable MTL RX overflow */
mtl_rx_int = readl(ioaddr + MTL_CHAN_INT_CTRL(channel));
writel(mtl_rx_int | MTL_RX_OVERFLOW_INT_EN,
ioaddr + MTL_CHAN_INT_CTRL(channel));
}
static void dwmac4_dma_operation_mode(void __iomem *ioaddr, int txmode,
int rxmode, int rxfifosz)
{
/* Only Channel 0 is actually configured and used */
dwmac4_dma_chan_op_mode(ioaddr, txmode, rxmode, 0);
}
static void dwmac4_get_hw_feature(void __iomem *ioaddr,
struct dma_features *dma_cap)
{
u32 hw_cap = readl(ioaddr + GMAC_HW_FEATURE0);
/* MAC HW feature0 */
dma_cap->mbps_10_100 = (hw_cap & GMAC_HW_FEAT_MIISEL);
dma_cap->mbps_1000 = (hw_cap & GMAC_HW_FEAT_GMIISEL) >> 1;
dma_cap->half_duplex = (hw_cap & GMAC_HW_FEAT_HDSEL) >> 2;
dma_cap->hash_filter = (hw_cap & GMAC_HW_FEAT_VLHASH) >> 4;
dma_cap->multi_addr = (hw_cap & GMAC_HW_FEAT_ADDMAC) >> 18;
dma_cap->pcs = (hw_cap & GMAC_HW_FEAT_PCSSEL) >> 3;
dma_cap->sma_mdio = (hw_cap & GMAC_HW_FEAT_SMASEL) >> 5;
dma_cap->pmt_remote_wake_up = (hw_cap & GMAC_HW_FEAT_RWKSEL) >> 6;
dma_cap->pmt_magic_frame = (hw_cap & GMAC_HW_FEAT_MGKSEL) >> 7;
/* MMC */
dma_cap->rmon = (hw_cap & GMAC_HW_FEAT_MMCSEL) >> 8;
/* IEEE 1588-2008 */
dma_cap->atime_stamp = (hw_cap & GMAC_HW_FEAT_TSSEL) >> 12;
/* 802.3az - Energy-Efficient Ethernet (EEE) */
dma_cap->eee = (hw_cap & GMAC_HW_FEAT_EEESEL) >> 13;
/* TX and RX csum */
dma_cap->tx_coe = (hw_cap & GMAC_HW_FEAT_TXCOSEL) >> 14;
dma_cap->rx_coe = (hw_cap & GMAC_HW_FEAT_RXCOESEL) >> 16;
/* MAC HW feature1 */
hw_cap = readl(ioaddr + GMAC_HW_FEATURE1);
dma_cap->av = (hw_cap & GMAC_HW_FEAT_AVSEL) >> 20;
dma_cap->tsoen = (hw_cap & GMAC_HW_TSOEN) >> 18;
/* MAC HW feature2 */
hw_cap = readl(ioaddr + GMAC_HW_FEATURE2);
/* TX and RX number of channels */
dma_cap->number_rx_channel =
((hw_cap & GMAC_HW_FEAT_RXCHCNT) >> 12) + 1;
dma_cap->number_tx_channel =
((hw_cap & GMAC_HW_FEAT_TXCHCNT) >> 18) + 1;
/* IEEE 1588-2002 */
dma_cap->time_stamp = 0;
}
/* Enable/disable TSO feature and set MSS */
static void dwmac4_enable_tso(void __iomem *ioaddr, bool en, u32 chan)
{
u32 value;
if (en) {
/* enable TSO */
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan));
writel(value | DMA_CONTROL_TSE,
ioaddr + DMA_CHAN_TX_CONTROL(chan));
} else {
/* enable TSO */
value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan));
writel(value & ~DMA_CONTROL_TSE,
ioaddr + DMA_CHAN_TX_CONTROL(chan));
}
}
const struct stmmac_dma_ops dwmac4_dma_ops = {
.reset = dwmac4_dma_reset,
.init = dwmac4_dma_init,
.axi = dwmac4_dma_axi,
.dump_regs = dwmac4_dump_dma_regs,
.dma_mode = dwmac4_dma_operation_mode,
.enable_dma_irq = dwmac4_enable_dma_irq,
.disable_dma_irq = dwmac4_disable_dma_irq,
.start_tx = dwmac4_dma_start_tx,
.stop_tx = dwmac4_dma_stop_tx,
.start_rx = dwmac4_dma_start_rx,
.stop_rx = dwmac4_dma_stop_rx,
.dma_interrupt = dwmac4_dma_interrupt,
.get_hw_feature = dwmac4_get_hw_feature,
.rx_watchdog = dwmac4_rx_watchdog,
.set_rx_ring_len = dwmac4_set_rx_ring_len,
.set_tx_ring_len = dwmac4_set_tx_ring_len,
.set_rx_tail_ptr = dwmac4_set_rx_tail_ptr,
.set_tx_tail_ptr = dwmac4_set_tx_tail_ptr,
.enable_tso = dwmac4_enable_tso,
};
const struct stmmac_dma_ops dwmac410_dma_ops = {
.reset = dwmac4_dma_reset,
.init = dwmac4_dma_init,
.axi = dwmac4_dma_axi,
.dump_regs = dwmac4_dump_dma_regs,
.dma_mode = dwmac4_dma_operation_mode,
.enable_dma_irq = dwmac410_enable_dma_irq,
.disable_dma_irq = dwmac4_disable_dma_irq,
.start_tx = dwmac4_dma_start_tx,
.stop_tx = dwmac4_dma_stop_tx,
.start_rx = dwmac4_dma_start_rx,
.stop_rx = dwmac4_dma_stop_rx,
.dma_interrupt = dwmac4_dma_interrupt,
.get_hw_feature = dwmac4_get_hw_feature,
.rx_watchdog = dwmac4_rx_watchdog,
.set_rx_ring_len = dwmac4_set_rx_ring_len,
.set_tx_ring_len = dwmac4_set_tx_ring_len,
.set_rx_tail_ptr = dwmac4_set_rx_tail_ptr,
.set_tx_tail_ptr = dwmac4_set_tx_tail_ptr,
.enable_tso = dwmac4_enable_tso,
};
|