1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Mediatek SoCs General-Purpose Timer handling.
*
* Copyright (C) 2014 Matthias Brugger
*
* Matthias Brugger <matthias.bgg@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqreturn.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <linux/slab.h>
#define GPT_IRQ_EN_REG 0x00
#define GPT_IRQ_ENABLE(val) BIT((val) - 1)
#define GPT_IRQ_ACK_REG 0x08
#define GPT_IRQ_ACK(val) BIT((val) - 1)
#define TIMER_CTRL_REG(val) (0x10 * (val))
#define TIMER_CTRL_OP(val) (((val) & 0x3) << 4)
#define TIMER_CTRL_OP_ONESHOT (0)
#define TIMER_CTRL_OP_REPEAT (1)
#define TIMER_CTRL_OP_FREERUN (3)
#define TIMER_CTRL_CLEAR (2)
#define TIMER_CTRL_ENABLE (1)
#define TIMER_CTRL_DISABLE (0)
#define TIMER_CLK_REG(val) (0x04 + (0x10 * (val)))
#define TIMER_CLK_SRC(val) (((val) & 0x1) << 4)
#define TIMER_CLK_SRC_SYS13M (0)
#define TIMER_CLK_SRC_RTC32K (1)
#define TIMER_CLK_DIV1 (0x0)
#define TIMER_CLK_DIV2 (0x1)
#define TIMER_CNT_REG(val) (0x08 + (0x10 * (val)))
#define TIMER_CMP_REG(val) (0x0C + (0x10 * (val)))
#define GPT_CLK_EVT 1
#define GPT_CLK_SRC 2
struct mtk_clock_event_device {
void __iomem *gpt_base;
u32 ticks_per_jiffy;
struct clock_event_device dev;
};
static void __iomem *gpt_sched_reg __read_mostly;
static u64 notrace mtk_read_sched_clock(void)
{
return readl_relaxed(gpt_sched_reg);
}
static inline struct mtk_clock_event_device *to_mtk_clk(
struct clock_event_device *c)
{
return container_of(c, struct mtk_clock_event_device, dev);
}
static void mtk_clkevt_time_stop(struct mtk_clock_event_device *evt, u8 timer)
{
u32 val;
val = readl(evt->gpt_base + TIMER_CTRL_REG(timer));
writel(val & ~TIMER_CTRL_ENABLE, evt->gpt_base +
TIMER_CTRL_REG(timer));
}
static void mtk_clkevt_time_setup(struct mtk_clock_event_device *evt,
unsigned long delay, u8 timer)
{
writel(delay, evt->gpt_base + TIMER_CMP_REG(timer));
}
static void mtk_clkevt_time_start(struct mtk_clock_event_device *evt,
bool periodic, u8 timer)
{
u32 val;
/* Acknowledge interrupt */
writel(GPT_IRQ_ACK(timer), evt->gpt_base + GPT_IRQ_ACK_REG);
val = readl(evt->gpt_base + TIMER_CTRL_REG(timer));
/* Clear 2 bit timer operation mode field */
val &= ~TIMER_CTRL_OP(0x3);
if (periodic)
val |= TIMER_CTRL_OP(TIMER_CTRL_OP_REPEAT);
else
val |= TIMER_CTRL_OP(TIMER_CTRL_OP_ONESHOT);
writel(val | TIMER_CTRL_ENABLE | TIMER_CTRL_CLEAR,
evt->gpt_base + TIMER_CTRL_REG(timer));
}
static int mtk_clkevt_shutdown(struct clock_event_device *clk)
{
mtk_clkevt_time_stop(to_mtk_clk(clk), GPT_CLK_EVT);
return 0;
}
static int mtk_clkevt_set_periodic(struct clock_event_device *clk)
{
struct mtk_clock_event_device *evt = to_mtk_clk(clk);
mtk_clkevt_time_stop(evt, GPT_CLK_EVT);
mtk_clkevt_time_setup(evt, evt->ticks_per_jiffy, GPT_CLK_EVT);
mtk_clkevt_time_start(evt, true, GPT_CLK_EVT);
return 0;
}
static int mtk_clkevt_next_event(unsigned long event,
struct clock_event_device *clk)
{
struct mtk_clock_event_device *evt = to_mtk_clk(clk);
mtk_clkevt_time_stop(evt, GPT_CLK_EVT);
mtk_clkevt_time_setup(evt, event, GPT_CLK_EVT);
mtk_clkevt_time_start(evt, false, GPT_CLK_EVT);
return 0;
}
static irqreturn_t mtk_timer_interrupt(int irq, void *dev_id)
{
struct mtk_clock_event_device *evt = dev_id;
/* Acknowledge timer0 irq */
writel(GPT_IRQ_ACK(GPT_CLK_EVT), evt->gpt_base + GPT_IRQ_ACK_REG);
evt->dev.event_handler(&evt->dev);
return IRQ_HANDLED;
}
static void
__init mtk_timer_setup(struct mtk_clock_event_device *evt, u8 timer, u8 option)
{
writel(TIMER_CTRL_CLEAR | TIMER_CTRL_DISABLE,
evt->gpt_base + TIMER_CTRL_REG(timer));
writel(TIMER_CLK_SRC(TIMER_CLK_SRC_SYS13M) | TIMER_CLK_DIV1,
evt->gpt_base + TIMER_CLK_REG(timer));
writel(0x0, evt->gpt_base + TIMER_CMP_REG(timer));
writel(TIMER_CTRL_OP(option) | TIMER_CTRL_ENABLE,
evt->gpt_base + TIMER_CTRL_REG(timer));
}
static void mtk_timer_enable_irq(struct mtk_clock_event_device *evt, u8 timer)
{
u32 val;
/* Disable all interrupts */
writel(0x0, evt->gpt_base + GPT_IRQ_EN_REG);
/* Acknowledge all spurious pending interrupts */
writel(0x3f, evt->gpt_base + GPT_IRQ_ACK_REG);
val = readl(evt->gpt_base + GPT_IRQ_EN_REG);
writel(val | GPT_IRQ_ENABLE(timer),
evt->gpt_base + GPT_IRQ_EN_REG);
}
static int __init mtk_timer_init(struct device_node *node)
{
struct mtk_clock_event_device *evt;
struct resource res;
unsigned long rate = 0;
struct clk *clk;
evt = kzalloc(sizeof(*evt), GFP_KERNEL);
if (!evt)
return -ENOMEM;
evt->dev.name = "mtk_tick";
evt->dev.rating = 300;
evt->dev.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
evt->dev.set_state_shutdown = mtk_clkevt_shutdown;
evt->dev.set_state_periodic = mtk_clkevt_set_periodic;
evt->dev.set_state_oneshot = mtk_clkevt_shutdown;
evt->dev.tick_resume = mtk_clkevt_shutdown;
evt->dev.set_next_event = mtk_clkevt_next_event;
evt->dev.cpumask = cpu_possible_mask;
evt->gpt_base = of_io_request_and_map(node, 0, "mtk-timer");
if (IS_ERR(evt->gpt_base)) {
pr_err("Can't get resource\n");
goto err_kzalloc;
}
evt->dev.irq = irq_of_parse_and_map(node, 0);
if (evt->dev.irq <= 0) {
pr_err("Can't parse IRQ\n");
goto err_mem;
}
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_err("Can't get timer clock\n");
goto err_irq;
}
if (clk_prepare_enable(clk)) {
pr_err("Can't prepare clock\n");
goto err_clk_put;
}
rate = clk_get_rate(clk);
if (request_irq(evt->dev.irq, mtk_timer_interrupt,
IRQF_TIMER | IRQF_IRQPOLL, "mtk_timer", evt)) {
pr_err("failed to setup irq %d\n", evt->dev.irq);
goto err_clk_disable;
}
evt->ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
/* Configure clock source */
mtk_timer_setup(evt, GPT_CLK_SRC, TIMER_CTRL_OP_FREERUN);
clocksource_mmio_init(evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC),
node->name, rate, 300, 32, clocksource_mmio_readl_up);
gpt_sched_reg = evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC);
sched_clock_register(mtk_read_sched_clock, 32, rate);
/* Configure clock event */
mtk_timer_setup(evt, GPT_CLK_EVT, TIMER_CTRL_OP_REPEAT);
clockevents_config_and_register(&evt->dev, rate, 0x3,
0xffffffff);
mtk_timer_enable_irq(evt, GPT_CLK_EVT);
return 0;
err_clk_disable:
clk_disable_unprepare(clk);
err_clk_put:
clk_put(clk);
err_irq:
irq_dispose_mapping(evt->dev.irq);
err_mem:
iounmap(evt->gpt_base);
of_address_to_resource(node, 0, &res);
release_mem_region(res.start, resource_size(&res));
err_kzalloc:
kfree(evt);
return -EINVAL;
}
CLOCKSOURCE_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_timer_init);
|