1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "include/fixed31_32.h"
static inline unsigned long long abs_i64(
long long arg)
{
if (arg > 0)
return (unsigned long long)arg;
else
return (unsigned long long)(-arg);
}
/*
* @brief
* result = dividend / divisor
* *remainder = dividend % divisor
*/
static inline unsigned long long complete_integer_division_u64(
unsigned long long dividend,
unsigned long long divisor,
unsigned long long *remainder)
{
unsigned long long result;
ASSERT(divisor);
result = div64_u64_rem(dividend, divisor, remainder);
return result;
}
#define FRACTIONAL_PART_MASK \
((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
#define GET_INTEGER_PART(x) \
((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
#define GET_FRACTIONAL_PART(x) \
(FRACTIONAL_PART_MASK & (x))
struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
{
struct fixed31_32 res;
bool arg1_negative = numerator < 0;
bool arg2_negative = denominator < 0;
unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
unsigned long long remainder;
/* determine integer part */
unsigned long long res_value = complete_integer_division_u64(
arg1_value, arg2_value, &remainder);
ASSERT(res_value <= LONG_MAX);
/* determine fractional part */
{
unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
unsigned long long summand = (remainder << 1) >= arg2_value;
ASSERT(res_value <= LLONG_MAX - summand);
res_value += summand;
}
res.value = (long long)res_value;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
struct fixed31_32 res;
bool arg1_negative = arg1.value < 0;
bool arg2_negative = arg2.value < 0;
unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
unsigned long long tmp;
res.value = arg1_int * arg2_int;
ASSERT(res.value <= LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg1_int * arg2_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg2_int * arg1_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg1_fra * arg2_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)dc_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
{
struct fixed31_32 res;
unsigned long long arg_value = abs_i64(arg.value);
unsigned long long arg_int = GET_INTEGER_PART(arg_value);
unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
unsigned long long tmp;
res.value = arg_int * arg_int;
ASSERT(res.value <= LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg_int * arg_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg_fra * arg_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)dc_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
return res;
}
struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
{
/*
* @note
* Good idea to use Newton's method
*/
ASSERT(arg.value);
return dc_fixpt_from_fraction(
dc_fixpt_one.value,
arg.value);
}
struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
{
struct fixed31_32 square;
struct fixed31_32 res = dc_fixpt_one;
int n = 27;
struct fixed31_32 arg_norm = arg;
if (dc_fixpt_le(
dc_fixpt_two_pi,
dc_fixpt_abs(arg))) {
arg_norm = dc_fixpt_sub(
arg_norm,
dc_fixpt_mul_int(
dc_fixpt_two_pi,
(int)div64_s64(
arg_norm.value,
dc_fixpt_two_pi.value)));
}
square = dc_fixpt_sqr(arg_norm);
do {
res = dc_fixpt_sub(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n > 2);
if (arg.value != arg_norm.value)
res = dc_fixpt_div(
dc_fixpt_mul(res, arg_norm),
arg);
return res;
}
struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
{
return dc_fixpt_mul(
arg,
dc_fixpt_sinc(arg));
}
struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
{
/* TODO implement argument normalization */
const struct fixed31_32 square = dc_fixpt_sqr(arg);
struct fixed31_32 res = dc_fixpt_one;
int n = 26;
do {
res = dc_fixpt_sub(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n != 0);
return res;
}
/*
* @brief
* result = exp(arg),
* where abs(arg) < 1
*
* Calculated as Taylor series.
*/
static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
{
unsigned int n = 9;
struct fixed31_32 res = dc_fixpt_from_fraction(
n + 2,
n + 1);
/* TODO find correct res */
ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
do
res = dc_fixpt_add(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
arg,
res),
n));
while (--n != 1);
return dc_fixpt_add(
dc_fixpt_one,
dc_fixpt_mul(
arg,
res));
}
struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
{
/*
* @brief
* Main equation is:
* exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
* where m = round(x / ln(2)), r = x - m * ln(2)
*/
if (dc_fixpt_le(
dc_fixpt_ln2_div_2,
dc_fixpt_abs(arg))) {
int m = dc_fixpt_round(
dc_fixpt_div(
arg,
dc_fixpt_ln2));
struct fixed31_32 r = dc_fixpt_sub(
arg,
dc_fixpt_mul_int(
dc_fixpt_ln2,
m));
ASSERT(m != 0);
ASSERT(dc_fixpt_lt(
dc_fixpt_abs(r),
dc_fixpt_one));
if (m > 0)
return dc_fixpt_shl(
fixed31_32_exp_from_taylor_series(r),
(unsigned char)m);
else
return dc_fixpt_div_int(
fixed31_32_exp_from_taylor_series(r),
1LL << -m);
} else if (arg.value != 0)
return fixed31_32_exp_from_taylor_series(arg);
else
return dc_fixpt_one;
}
struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
{
struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
/* TODO improve 1st estimation */
struct fixed31_32 error;
ASSERT(arg.value > 0);
/* TODO if arg is negative, return NaN */
/* TODO if arg is zero, return -INF */
do {
struct fixed31_32 res1 = dc_fixpt_add(
dc_fixpt_sub(
res,
dc_fixpt_one),
dc_fixpt_div(
arg,
dc_fixpt_exp(res)));
error = dc_fixpt_sub(
res,
res1);
res = res1;
/* TODO determine max_allowed_error based on quality of exp() */
} while (abs_i64(error.value) > 100ULL);
return res;
}
/* this function is a generic helper to translate fixed point value to
* specified integer format that will consist of integer_bits integer part and
* fractional_bits fractional part. For example it is used in
* dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
* part in 32 bits. It is used in hw programming (scaler)
*/
static inline unsigned int ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
/* 1. create mask of integer part */
unsigned int result = (1 << integer_bits) - 1;
/* 2. mask out fractional part */
unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
/* 3. shrink fixed point integer part to be of integer_bits width*/
result &= GET_INTEGER_PART(value);
/* 4. make space for fractional part to be filled in after integer */
result <<= fractional_bits;
/* 5. shrink fixed point fractional part to of fractional_bits width*/
fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
/* 6. merge the result */
return result | fractional_part;
}
static inline unsigned int clamp_ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits,
unsigned int min_clamp)
{
unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
return (1 << (integer_bits + fractional_bits)) - 1;
else if (truncated_val > min_clamp)
return truncated_val;
else
return min_clamp;
}
unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 4, 19);
}
unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 3, 19);
}
unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 2, 19);
}
unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 0, 19);
}
unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 14, 1);
}
unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 10, 1);
}
int dc_fixpt_s4d19(struct fixed31_32 arg)
{
if (arg.value < 0)
return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
else
return ux_dy(arg.value, 4, 19);
}
|