1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
#include <asm-generic/pgtable-nopmd.h>
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
#ifdef CONFIG_44x
extern int icache_44x_need_flush;
#endif
#endif /* __ASSEMBLY__ */
#define PTE_INDEX_SIZE PTE_SHIFT
#define PMD_INDEX_SIZE 0
#define PUD_INDEX_SIZE 0
#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#define PUD_CACHE_INDEX PUD_INDEX_SIZE
#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
#define PMD_TABLE_SIZE 0
#define PUD_TABLE_SIZE 0
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
#endif /* __ASSEMBLY__ */
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/*
* The normal case is that PTEs are 32-bits and we have a 1-page
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
*
* For any >32-bit physical address platform, we can use the following
* two level page table layout where the pgdir is 8KB and the MS 13 bits
* are an index to the second level table. The combined pgdir/pmd first
* level has 2048 entries and the second level has 512 64-bit PTE entries.
* -Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
#ifndef __ASSEMBLY__
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
void unmap_kernel_page(unsigned long va);
#endif /* !__ASSEMBLY__ */
/*
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
* value (for now) on others, from where we can start layout kernel
* virtual space that goes below PKMAP and FIXMAP
*/
#include <asm/fixmap.h>
/*
* ioremap_bot starts at that address. Early ioremaps move down from there,
* until mem_init() at which point this becomes the top of the vmalloc
* and ioremap space
*/
#ifdef CONFIG_HIGHMEM
#define IOREMAP_TOP PKMAP_BASE
#else
#define IOREMAP_TOP FIXADDR_START
#endif
/* PPC32 shares vmalloc area with ioremap */
#define IOREMAP_START VMALLOC_START
#define IOREMAP_END VMALLOC_END
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 16MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from IOREMAP_TOP being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#ifdef CONFIG_KASAN_VMALLOC
#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
#else
#define VMALLOC_END ioremap_bot
#endif
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#if defined(CONFIG_40x)
#include <asm/nohash/32/pte-40x.h>
#elif defined(CONFIG_44x)
#include <asm/nohash/32/pte-44x.h>
#elif defined(CONFIG_PPC_85xx) && defined(CONFIG_PTE_64BIT)
#include <asm/nohash/pte-e500.h>
#elif defined(CONFIG_PPC_85xx)
#include <asm/nohash/32/pte-85xx.h>
#elif defined(CONFIG_PPC_8xx)
#include <asm/nohash/32/pte-8xx.h>
#endif
/*
* Location of the PFN in the PTE. Most 32-bit platforms use the same
* as _PAGE_SHIFT here (ie, naturally aligned).
* Platform who don't just pre-define the value so we don't override it here.
*/
#ifndef PTE_RPN_SHIFT
#define PTE_RPN_SHIFT (PAGE_SHIFT)
#endif
/*
* The mask covered by the RPN must be a ULL on 32-bit platforms with
* 64-bit PTEs.
*/
#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
#define MAX_POSSIBLE_PHYSMEM_BITS 36
#else
#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
#define MAX_POSSIBLE_PHYSMEM_BITS 32
#endif
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes.
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
#ifndef __ASSEMBLY__
#define pte_clear(mm, addr, ptep) \
do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
#ifndef pte_mkwrite
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
#endif
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
#ifndef pte_wrprotect
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
#endif
#ifndef pte_mkexec
static inline pte_t pte_mkexec(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_EXEC);
}
#endif
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*
* In addition, on 44x, we also maintain a global flag indicating
* that an executable user mapping was modified, which is needed
* to properly flush the virtually tagged instruction cache of
* those implementations.
*
* On the 8xx, the page tables are a bit special. For 16k pages, we have
* 4 identical entries. For 512k pages, we have 128 entries as if it was
* 4k pages, but they are flagged as 512k pages for the hardware.
* For other page sizes, we have a single entry in the table.
*/
#ifdef CONFIG_PPC_8xx
static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
static int hugepd_ok(hugepd_t hpd);
static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
{
if (!huge)
return PAGE_SIZE / SZ_4K;
else if (hugepd_ok(*((hugepd_t *)pmd)))
return 1;
else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
return SZ_16K / SZ_4K;
else
return SZ_512K / SZ_4K;
}
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
unsigned long clr, unsigned long set, int huge)
{
pte_basic_t *entry = (pte_basic_t *)p;
pte_basic_t old = pte_val(*p);
pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
int num, i;
pmd_t *pmd = pmd_off(mm, addr);
num = number_of_cells_per_pte(pmd, new, huge);
for (i = 0; i < num; i++, entry++, new += SZ_4K)
*entry = new;
return old;
}
#ifdef CONFIG_PPC_16K_PAGES
#define __HAVE_ARCH_PTEP_GET
static inline pte_t ptep_get(pte_t *ptep)
{
pte_basic_t val = READ_ONCE(ptep->pte);
pte_t pte = {val, val, val, val};
return pte;
}
#endif /* CONFIG_PPC_16K_PAGES */
#else
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
unsigned long clr, unsigned long set, int huge)
{
pte_basic_t old = pte_val(*p);
pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
*p = __pte(new);
#ifdef CONFIG_44x
if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
icache_44x_need_flush = 1;
#endif
return old;
}
#endif
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#ifndef ptep_set_wrprotect
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
}
#endif
#ifndef __ptep_set_access_flags
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
pte_t *ptep, pte_t entry,
unsigned long address,
int psize)
{
unsigned long set = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
int huge = psize > mmu_virtual_psize ? 1 : 0;
pte_update(vma->vm_mm, address, ptep, 0, set, huge);
flush_tlb_page(vma, address);
}
#endif
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
/*
* Note that on Book E processors, the pmd contains the kernel virtual
* (lowmem) address of the pte page. The physical address is less useful
* because everything runs with translation enabled (even the TLB miss
* handler). On everything else the pmd contains the physical address
* of the pte page. -- paulus
*/
#ifndef CONFIG_BOOKE
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
#else
#define pmd_page_vaddr(pmd) \
((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
#endif
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit.
* -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
|