1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021-2022 Intel Corporation */
#undef pr_fmt
#define pr_fmt(fmt) "tdx: " fmt
#include <linux/cpufeature.h>
#include <asm/coco.h>
#include <asm/tdx.h>
#include <asm/vmx.h>
#include <asm/ia32.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/pgtable.h>
#include <asm/traps.h>
/* TDX module Call Leaf IDs */
#define TDX_GET_INFO 1
#define TDX_GET_VEINFO 3
#define TDX_ACCEPT_PAGE 6
/* TDX hypercall Leaf IDs */
#define TDVMCALL_MAP_GPA 0x10001
/* MMIO direction */
#define EPT_READ 0
#define EPT_WRITE 1
/* Port I/O direction */
#define PORT_READ 0
#define PORT_WRITE 1
/* See Exit Qualification for I/O Instructions in VMX documentation */
#define VE_IS_IO_IN(e) ((e) & BIT(3))
#define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1)
#define VE_GET_PORT_NUM(e) ((e) >> 16)
#define VE_IS_IO_STRING(e) ((e) & BIT(4))
#define ATTR_SEPT_VE_DISABLE BIT(28)
/*
* Wrapper for standard use of __tdx_hypercall with no output aside from
* return code.
*/
static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = fn,
.r12 = r12,
.r13 = r13,
.r14 = r14,
.r15 = r15,
};
return __tdx_hypercall(&args, 0);
}
/* Called from __tdx_hypercall() for unrecoverable failure */
void __tdx_hypercall_failed(void)
{
panic("TDVMCALL failed. TDX module bug?");
}
/*
* The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
* independently from but are currently matched 1:1 with VMX EXIT_REASONs.
* Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
* guest sides of these calls.
*/
static u64 hcall_func(u64 exit_reason)
{
return exit_reason;
}
#ifdef CONFIG_KVM_GUEST
long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
unsigned long p3, unsigned long p4)
{
struct tdx_hypercall_args args = {
.r10 = nr,
.r11 = p1,
.r12 = p2,
.r13 = p3,
.r14 = p4,
};
return __tdx_hypercall(&args, 0);
}
EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
#endif
/*
* Used for TDX guests to make calls directly to the TD module. This
* should only be used for calls that have no legitimate reason to fail
* or where the kernel can not survive the call failing.
*/
static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
struct tdx_module_output *out)
{
if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
}
static void tdx_parse_tdinfo(u64 *cc_mask)
{
struct tdx_module_output out;
unsigned int gpa_width;
u64 td_attr;
/*
* TDINFO TDX module call is used to get the TD execution environment
* information like GPA width, number of available vcpus, debug mode
* information, etc. More details about the ABI can be found in TDX
* Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
* [TDG.VP.INFO].
*/
tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
/*
* The highest bit of a guest physical address is the "sharing" bit.
* Set it for shared pages and clear it for private pages.
*
* The GPA width that comes out of this call is critical. TDX guests
* can not meaningfully run without it.
*/
gpa_width = out.rcx & GENMASK(5, 0);
*cc_mask = BIT_ULL(gpa_width - 1);
/*
* The kernel can not handle #VE's when accessing normal kernel
* memory. Ensure that no #VE will be delivered for accesses to
* TD-private memory. Only VMM-shared memory (MMIO) will #VE.
*/
td_attr = out.rdx;
if (!(td_attr & ATTR_SEPT_VE_DISABLE))
panic("TD misconfiguration: SEPT_VE_DISABLE attibute must be set.\n");
}
/*
* The TDX module spec states that #VE may be injected for a limited set of
* reasons:
*
* - Emulation of the architectural #VE injection on EPT violation;
*
* - As a result of guest TD execution of a disallowed instruction,
* a disallowed MSR access, or CPUID virtualization;
*
* - A notification to the guest TD about anomalous behavior;
*
* The last one is opt-in and is not used by the kernel.
*
* The Intel Software Developer's Manual describes cases when instruction
* length field can be used in section "Information for VM Exits Due to
* Instruction Execution".
*
* For TDX, it ultimately means GET_VEINFO provides reliable instruction length
* information if #VE occurred due to instruction execution, but not for EPT
* violations.
*/
static int ve_instr_len(struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_HLT:
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
case EXIT_REASON_CPUID:
case EXIT_REASON_IO_INSTRUCTION:
/* It is safe to use ve->instr_len for #VE due instructions */
return ve->instr_len;
case EXIT_REASON_EPT_VIOLATION:
/*
* For EPT violations, ve->insn_len is not defined. For those,
* the kernel must decode instructions manually and should not
* be using this function.
*/
WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
return 0;
default:
WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
return ve->instr_len;
}
}
static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_HLT),
.r12 = irq_disabled,
};
/*
* Emulate HLT operation via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
*
* The VMM uses the "IRQ disabled" param to understand IRQ
* enabled status (RFLAGS.IF) of the TD guest and to determine
* whether or not it should schedule the halted vCPU if an
* IRQ becomes pending. E.g. if IRQs are disabled, the VMM
* can keep the vCPU in virtual HLT, even if an IRQ is
* pending, without hanging/breaking the guest.
*/
return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0);
}
static int handle_halt(struct ve_info *ve)
{
/*
* Since non safe halt is mainly used in CPU offlining
* and the guest will always stay in the halt state, don't
* call the STI instruction (set do_sti as false).
*/
const bool irq_disabled = irqs_disabled();
const bool do_sti = false;
if (__halt(irq_disabled, do_sti))
return -EIO;
return ve_instr_len(ve);
}
void __cpuidle tdx_safe_halt(void)
{
/*
* For do_sti=true case, __tdx_hypercall() function enables
* interrupts using the STI instruction before the TDCALL. So
* set irq_disabled as false.
*/
const bool irq_disabled = false;
const bool do_sti = true;
/*
* Use WARN_ONCE() to report the failure.
*/
if (__halt(irq_disabled, do_sti))
WARN_ONCE(1, "HLT instruction emulation failed\n");
}
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_READ),
.r12 = regs->cx,
};
/*
* Emulate the MSR read via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
*/
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return -EIO;
regs->ax = lower_32_bits(args.r11);
regs->dx = upper_32_bits(args.r11);
return ve_instr_len(ve);
}
static int write_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
.r12 = regs->cx,
.r13 = (u64)regs->dx << 32 | regs->ax,
};
/*
* Emulate the MSR write via hypercall. More info about ABI
* can be found in TDX Guest-Host-Communication Interface
* (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
*/
if (__tdx_hypercall(&args, 0))
return -EIO;
return ve_instr_len(ve);
}
static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_CPUID),
.r12 = regs->ax,
.r13 = regs->cx,
};
/*
* Only allow VMM to control range reserved for hypervisor
* communication.
*
* Return all-zeros for any CPUID outside the range. It matches CPU
* behaviour for non-supported leaf.
*/
if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
regs->ax = regs->bx = regs->cx = regs->dx = 0;
return ve_instr_len(ve);
}
/*
* Emulate the CPUID instruction via a hypercall. More info about
* ABI can be found in TDX Guest-Host-Communication Interface
* (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
*/
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return -EIO;
/*
* As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
* EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
* So copy the register contents back to pt_regs.
*/
regs->ax = args.r12;
regs->bx = args.r13;
regs->cx = args.r14;
regs->dx = args.r15;
return ve_instr_len(ve);
}
static bool mmio_read(int size, unsigned long addr, unsigned long *val)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
.r12 = size,
.r13 = EPT_READ,
.r14 = addr,
};
if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
return false;
*val = args.r11;
return true;
}
static bool mmio_write(int size, unsigned long addr, unsigned long val)
{
return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
EPT_WRITE, addr, val);
}
static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
{
unsigned long *reg, val, vaddr;
char buffer[MAX_INSN_SIZE];
struct insn insn = {};
enum mmio_type mmio;
int size, extend_size;
u8 extend_val = 0;
/* Only in-kernel MMIO is supported */
if (WARN_ON_ONCE(user_mode(regs)))
return -EFAULT;
if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
return -EFAULT;
if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
return -EINVAL;
mmio = insn_decode_mmio(&insn, &size);
if (WARN_ON_ONCE(mmio == MMIO_DECODE_FAILED))
return -EINVAL;
if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
reg = insn_get_modrm_reg_ptr(&insn, regs);
if (!reg)
return -EINVAL;
}
if (!fault_in_kernel_space(ve->gla)) {
WARN_ONCE(1, "Access to userspace address is not supported");
return -EINVAL;
}
/*
* Reject EPT violation #VEs that split pages.
*
* MMIO accesses are supposed to be naturally aligned and therefore
* never cross page boundaries. Seeing split page accesses indicates
* a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
*
* load_unaligned_zeropad() will recover using exception fixups.
*/
vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
return -EFAULT;
/* Handle writes first */
switch (mmio) {
case MMIO_WRITE:
memcpy(&val, reg, size);
if (!mmio_write(size, ve->gpa, val))
return -EIO;
return insn.length;
case MMIO_WRITE_IMM:
val = insn.immediate.value;
if (!mmio_write(size, ve->gpa, val))
return -EIO;
return insn.length;
case MMIO_READ:
case MMIO_READ_ZERO_EXTEND:
case MMIO_READ_SIGN_EXTEND:
/* Reads are handled below */
break;
case MMIO_MOVS:
case MMIO_DECODE_FAILED:
/*
* MMIO was accessed with an instruction that could not be
* decoded or handled properly. It was likely not using io.h
* helpers or accessed MMIO accidentally.
*/
return -EINVAL;
default:
WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
return -EINVAL;
}
/* Handle reads */
if (!mmio_read(size, ve->gpa, &val))
return -EIO;
switch (mmio) {
case MMIO_READ:
/* Zero-extend for 32-bit operation */
extend_size = size == 4 ? sizeof(*reg) : 0;
break;
case MMIO_READ_ZERO_EXTEND:
/* Zero extend based on operand size */
extend_size = insn.opnd_bytes;
break;
case MMIO_READ_SIGN_EXTEND:
/* Sign extend based on operand size */
extend_size = insn.opnd_bytes;
if (size == 1 && val & BIT(7))
extend_val = 0xFF;
else if (size > 1 && val & BIT(15))
extend_val = 0xFF;
break;
default:
/* All other cases has to be covered with the first switch() */
WARN_ON_ONCE(1);
return -EINVAL;
}
if (extend_size)
memset(reg, extend_val, extend_size);
memcpy(reg, &val, size);
return insn.length;
}
static bool handle_in(struct pt_regs *regs, int size, int port)
{
struct tdx_hypercall_args args = {
.r10 = TDX_HYPERCALL_STANDARD,
.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
.r12 = size,
.r13 = PORT_READ,
.r14 = port,
};
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
bool success;
/*
* Emulate the I/O read via hypercall. More info about ABI can be found
* in TDX Guest-Host-Communication Interface (GHCI) section titled
* "TDG.VP.VMCALL<Instruction.IO>".
*/
success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT);
/* Update part of the register affected by the emulated instruction */
regs->ax &= ~mask;
if (success)
regs->ax |= args.r11 & mask;
return success;
}
static bool handle_out(struct pt_regs *regs, int size, int port)
{
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
/*
* Emulate the I/O write via hypercall. More info about ABI can be found
* in TDX Guest-Host-Communication Interface (GHCI) section titled
* "TDG.VP.VMCALL<Instruction.IO>".
*/
return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
PORT_WRITE, port, regs->ax & mask);
}
/*
* Emulate I/O using hypercall.
*
* Assumes the IO instruction was using ax, which is enforced
* by the standard io.h macros.
*
* Return True on success or False on failure.
*/
static int handle_io(struct pt_regs *regs, struct ve_info *ve)
{
u32 exit_qual = ve->exit_qual;
int size, port;
bool in, ret;
if (VE_IS_IO_STRING(exit_qual))
return -EIO;
in = VE_IS_IO_IN(exit_qual);
size = VE_GET_IO_SIZE(exit_qual);
port = VE_GET_PORT_NUM(exit_qual);
if (in)
ret = handle_in(regs, size, port);
else
ret = handle_out(regs, size, port);
if (!ret)
return -EIO;
return ve_instr_len(ve);
}
/*
* Early #VE exception handler. Only handles a subset of port I/O.
* Intended only for earlyprintk. If failed, return false.
*/
__init bool tdx_early_handle_ve(struct pt_regs *regs)
{
struct ve_info ve;
int insn_len;
tdx_get_ve_info(&ve);
if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
return false;
insn_len = handle_io(regs, &ve);
if (insn_len < 0)
return false;
regs->ip += insn_len;
return true;
}
void tdx_get_ve_info(struct ve_info *ve)
{
struct tdx_module_output out;
/*
* Called during #VE handling to retrieve the #VE info from the
* TDX module.
*
* This has to be called early in #VE handling. A "nested" #VE which
* occurs before this will raise a #DF and is not recoverable.
*
* The call retrieves the #VE info from the TDX module, which also
* clears the "#VE valid" flag. This must be done before anything else
* because any #VE that occurs while the valid flag is set will lead to
* #DF.
*
* Note, the TDX module treats virtual NMIs as inhibited if the #VE
* valid flag is set. It means that NMI=>#VE will not result in a #DF.
*/
tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
/* Transfer the output parameters */
ve->exit_reason = out.rcx;
ve->exit_qual = out.rdx;
ve->gla = out.r8;
ve->gpa = out.r9;
ve->instr_len = lower_32_bits(out.r10);
ve->instr_info = upper_32_bits(out.r10);
}
/*
* Handle the user initiated #VE.
*
* On success, returns the number of bytes RIP should be incremented (>=0)
* or -errno on error.
*/
static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_CPUID:
return handle_cpuid(regs, ve);
default:
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
return -EIO;
}
}
/*
* Handle the kernel #VE.
*
* On success, returns the number of bytes RIP should be incremented (>=0)
* or -errno on error.
*/
static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
{
switch (ve->exit_reason) {
case EXIT_REASON_HLT:
return handle_halt(ve);
case EXIT_REASON_MSR_READ:
return read_msr(regs, ve);
case EXIT_REASON_MSR_WRITE:
return write_msr(regs, ve);
case EXIT_REASON_CPUID:
return handle_cpuid(regs, ve);
case EXIT_REASON_EPT_VIOLATION:
return handle_mmio(regs, ve);
case EXIT_REASON_IO_INSTRUCTION:
return handle_io(regs, ve);
default:
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
return -EIO;
}
}
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
{
int insn_len;
if (user_mode(regs))
insn_len = virt_exception_user(regs, ve);
else
insn_len = virt_exception_kernel(regs, ve);
if (insn_len < 0)
return false;
/* After successful #VE handling, move the IP */
regs->ip += insn_len;
return true;
}
static bool tdx_tlb_flush_required(bool private)
{
/*
* TDX guest is responsible for flushing TLB on private->shared
* transition. VMM is responsible for flushing on shared->private.
*
* The VMM _can't_ flush private addresses as it can't generate PAs
* with the guest's HKID. Shared memory isn't subject to integrity
* checking, i.e. the VMM doesn't need to flush for its own protection.
*
* There's no need to flush when converting from shared to private,
* as flushing is the VMM's responsibility in this case, e.g. it must
* flush to avoid integrity failures in the face of a buggy or
* malicious guest.
*/
return !private;
}
static bool tdx_cache_flush_required(void)
{
/*
* AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
* TDX doesn't have such capability.
*
* Flush cache unconditionally.
*/
return true;
}
static bool try_accept_one(phys_addr_t *start, unsigned long len,
enum pg_level pg_level)
{
unsigned long accept_size = page_level_size(pg_level);
u64 tdcall_rcx;
u8 page_size;
if (!IS_ALIGNED(*start, accept_size))
return false;
if (len < accept_size)
return false;
/*
* Pass the page physical address to the TDX module to accept the
* pending, private page.
*
* Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G.
*/
switch (pg_level) {
case PG_LEVEL_4K:
page_size = 0;
break;
case PG_LEVEL_2M:
page_size = 1;
break;
case PG_LEVEL_1G:
page_size = 2;
break;
default:
return false;
}
tdcall_rcx = *start | page_size;
if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL))
return false;
*start += accept_size;
return true;
}
/*
* Inform the VMM of the guest's intent for this physical page: shared with
* the VMM or private to the guest. The VMM is expected to change its mapping
* of the page in response.
*/
static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
{
phys_addr_t start = __pa(vaddr);
phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE);
if (!enc) {
/* Set the shared (decrypted) bits: */
start |= cc_mkdec(0);
end |= cc_mkdec(0);
}
/*
* Notify the VMM about page mapping conversion. More info about ABI
* can be found in TDX Guest-Host-Communication Interface (GHCI),
* section "TDG.VP.VMCALL<MapGPA>"
*/
if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
return false;
/* private->shared conversion requires only MapGPA call */
if (!enc)
return true;
/*
* For shared->private conversion, accept the page using
* TDX_ACCEPT_PAGE TDX module call.
*/
while (start < end) {
unsigned long len = end - start;
/*
* Try larger accepts first. It gives chance to VMM to keep
* 1G/2M SEPT entries where possible and speeds up process by
* cutting number of hypercalls (if successful).
*/
if (try_accept_one(&start, len, PG_LEVEL_1G))
continue;
if (try_accept_one(&start, len, PG_LEVEL_2M))
continue;
if (!try_accept_one(&start, len, PG_LEVEL_4K))
return false;
}
return true;
}
static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
bool enc)
{
/*
* Only handle shared->private conversion here.
* See the comment in tdx_early_init().
*/
if (enc)
return tdx_enc_status_changed(vaddr, numpages, enc);
return true;
}
static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
bool enc)
{
/*
* Only handle private->shared conversion here.
* See the comment in tdx_early_init().
*/
if (!enc)
return tdx_enc_status_changed(vaddr, numpages, enc);
return true;
}
void __init tdx_early_init(void)
{
u64 cc_mask;
u32 eax, sig[3];
cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
if (memcmp(TDX_IDENT, sig, sizeof(sig)))
return;
setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
cc_vendor = CC_VENDOR_INTEL;
tdx_parse_tdinfo(&cc_mask);
cc_set_mask(cc_mask);
/*
* All bits above GPA width are reserved and kernel treats shared bit
* as flag, not as part of physical address.
*
* Adjust physical mask to only cover valid GPA bits.
*/
physical_mask &= cc_mask - 1;
/*
* The kernel mapping should match the TDX metadata for the page.
* load_unaligned_zeropad() can touch memory *adjacent* to that which is
* owned by the caller and can catch even _momentary_ mismatches. Bad
* things happen on mismatch:
*
* - Private mapping => Shared Page == Guest shutdown
* - Shared mapping => Private Page == Recoverable #VE
*
* guest.enc_status_change_prepare() converts the page from
* shared=>private before the mapping becomes private.
*
* guest.enc_status_change_finish() converts the page from
* private=>shared after the mapping becomes private.
*
* In both cases there is a temporary shared mapping to a private page,
* which can result in a #VE. But, there is never a private mapping to
* a shared page.
*/
x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish;
x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required;
pr_info("Guest detected\n");
}
|